LiDAR 3D Object Detection
Papers
Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
- intro: Apple Inc
 - arxiv: https://arxiv.org/abs/1711.06396
 
Complex-YOLO: Real-time 3D Object Detection on Point Clouds
- intro: Valeo Schalter und Sensoren GmbH & Ilmenau University of Technology
 - arxiv: https://arxiv.org/abs/1803.06199
 
Focal Loss in 3D Object Detection
- intro: IEEE RA-L 2019
 - project page: https://sites.google.com/view/fl3d
 - arxiv: https://arxiv.org/abs/1809.06065
 - github: https://github.com/pyun-ram/FL3D
 
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
- intro: CVPR 2019
 - arxiv: https://arxiv.org/abs/1812.04244
 - github(official): https://github.com/sshaoshuai/PV-RCNN
 - github(official): https://github.com/sshaoshuai/PointRCNN
 
3D Object Detection Using Scale Invariant and Feature Reweighting Networks
- intro: AAAI 2019
 - arxiv: https://arxiv.org/abs/1901.02237
 
3D Backbone Network for 3D Object Detection
https://arxiv.org/abs/1901.08373
Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds
https://arxiv.org/abs/1904.07537
Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss
- keywords: SS3D
 - arxiv: https://arxiv.org/abs/1906.08070
 - video: https://www.youtube.com/playlist?list=PL4jJwJr7UjMb4bzLwUGHdVmhfNS2Ads_x
 
Point-Voxel CNN for Efficient 3D Deep Learning
- intro: NeurIPS 2019 Spotlight
 - project page: https://hanlab.mit.edu/projects/pvcnn/
 - arxiv: https://arxiv.org/abs/1907.03739
 - github: https://github.com/mit-han-lab/pvcnn
 
IoU Loss for 2D/3D Object Detection
- intro: 3d vision 2019
 - arxiv: https://arxiv.org/abs/1908.03851
 
Deep Hough Voting for 3D Object Detection in Point Clouds
- intro: ICCV 2019
 - intro: Facebook AI Research & Stanford University
 - keywords: VoteNet
 - arxiv: https://arxiv.org/abs/1904.09664
 - github: https://github.com/facebookresearch/votenet
 
M3D-RPN: Monocular 3D Region Proposal Network for Object Detection
- intro: ICCV 2019 oral
 - project page: http://cvlab.cse.msu.edu/project-m3d-rpn.html
 - arxiv: https://arxiv.org/abs/1907.06038
 - github: https://github.com/garrickbrazil/M3D-RPN
 
Fast Point R-CNN
- intro: ICCV 2019
 - intro: CUHK & Tencent YouTu Lab
 - arxiv: https://arxiv.org/abs/1908.02990
 
Interpolated Convolutional Networks for 3D Point Cloud Understanding
- intro: ICCV 2019
 - arxiv: https://arxiv.org/abs/1908.04512
 
PointPillars: Fast Encoders for Object Detection from Point Clouds
- intro: nuTonomy: an APTIV company
 - keywords: a single stage
 - arxiv: http://http://arxiv.org/abs/1812.05784
 - github(official): https://github.com/nutonomy/second.pytorch
 
LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving
- intro: CVPR 2019
 - intro: Uber Advanced Technologies Group
 - arxiv: https://arxiv.org/abs/1903.08701
 
Sensor Fusion for Joint 3D Object Detection and Semantic Segmentation
- intro: CVPR Workshop on Autonomous Driving 2019
 - keywords: LaserNet++
 - arxiv: https://arxiv.org/abs/1904.11466
 
Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud
From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network
- intro: TPAMI 2020
 - arxiv: https://arxiv.org/abs/1907.03670
 - github(official): https://github.com/sshaoshuai/PartA2-Net
 - github(official): https://github.com/open-mmlab/OpenPCDet
 
Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection
- intro: CVPR 2019
 - intro: winner of nuScenes 3D Object Detection challenge in WAD
 - arxiv: https://arxiv.org/abs/1908.09492
 - github: https://github.com/ZhengWG/Class-balanced-Grouping-and-Sampling-for-Point-Cloud-3D-Object-Detection
 
End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds
- intro: CoRL 2019
 - intro: Waymo LLC & Google Brain
 - keywords: dynamic voxelization
 - arxiv: https://arxiv.org/abs/1910.06528
 
SampleNet: Differentiable Point Cloud Sampling
- intro: CVPR 2020 oral
 - intro: Tel Aviv University
 - arxiv: https://arxiv.org/abs/1912.03663
 - github: https://github.com/itailang/SampleNet
 
Learning Depth-Guided Convolutions for Monocular 3D Object Detection
- intro: CVPR 2020
 - arxiv: https://arxiv.org/abs/1912.04799
 - github: https://github.com/dingmyu/D4LCN
 
TANet: Robust 3D Object Detection from Point Clouds with Triple Attention
- intro: AAAI 2020 oral
 - intro: Huazhong University of Science and Technology & Chinese Academy of Sciences
 - arxiv: https://arxiv.org/abs/1912.05163
 - github: https://github.com/happinesslz/TANet
 
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
- intro: CVPR 2020
 - arxiv: https://arxiv.org/abs/1912.13192
 - github(official): https://github.com/open-mmlab/OpenPCDet
 
RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving
- intro: ECCV 2020
 - arxiv: https://arxiv.org/abs/2001.03343
 
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
- intro: CVPR 2020
 - intro: Carnegie Mellon University
 - arxiv: https://arxiv.org/abs/2003.01251
 - github: https://github.com/WeijingShi/Point-GNN
 
PV-RCNN: The Top-Performing LiDAR-only Solutions for 3D Detection / 3D Tracking / Domain Adaptation of Waymo Open Dataset Challenges
Deformable PV-RCNN: Improving 3D Object Detection with Learned Deformations
- intro: ECCV 2020 Workshop on Perception for Autonomous Driving
 - intro: University of Waterloo
 - arxiv: https://arxiv.org/abs/2008.08766
 - github: https://github.com/AutoVision-cloud/Deformable-PV-RCNN
 
SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation
- intro: CVPR 2020
 - intro: ZongMu Tech & TU/e
 - arxiv: https://arxiv.org/abs/2002.10111
 - github(official): https://github.com/lzccccc/SMOKE
 
3DSSD: Point-based 3D Single Stage Object Detector
- intro: CVPR 2020 Oral
 - arxiv: https://arxiv.org/abs/2002.10187
 - github: https://github.com/Jia-Research-Lab/3DSSD
 
HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection
- intro: CVPR 2020
 - intro: DEEPROUTE.AI
 - arxiv: https://arxiv.org/abs/2003.00186
 - paper: http://openaccess.thecvf.com/content_CVPR_2020/papers/Ye_HVNet_Hybrid_Voxel_Network_for_LiDAR_Based_3D_Object_Detection_CVPR_2020_paper.pdf
 
SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds
- intro: ECCV 2020
 - intro: CUHK & SenseTime Research & Hong Kong Baptist University
 - arxiv: https://arxiv.org/abs/2004.02774
 - github(mmdetection3d): https://github.com/xinge008/SSN
 
Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection
- intro: Google Research & Waymo LLC
 - keywords: Range Conditioned Dilation (RCD)
 - arxiv: https://arxiv.org/abs/2005.09927
 
Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
- intro: University of Waterloo & Sun Yat-Sen University & Xilinx Technology & Ryerson University
 - arxiv: https://arxiv.org/abs/2005.09830
 
Structure Aware Single-stage 3D Object Detection from Point Cloud
- intro: CVPR 2020
 - intro: The Hong Kong Polytechnic University & DAMO Academy, Alibaba Group
 - intro: SA-SSD
 - paper: http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Structure_Aware_Single-Stage_3D_Object_Detection_From_Point_Cloud_CVPR_2020_paper.pdf
 - paper: https://www4.comp.polyu.edu.hk/~cslzhang/paper/SA-SSD.pdf
 - github: https://github.com/skyhehe123/SA-SSD
 
Center3D: Center-based Monocular 3D Object Detection with Joint Depth Understanding
- keywords: one-stage anchor-free
 - arxiv: https://arxiv.org/abs/2005.13423
 
Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection
- intro: CVPR 2020
 - intro: Fudan University & Baidu Inc. & University of Science and Technology of China
 - arxiv: https://arxiv.org/abs/2006.04356
 
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
https://arxiv.org/abs/2006.04043
Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection
https://arxiv.org/abs/2006.05187
Generative Sparse Detection Networks for 3D Single-shot Object Detection
- intro: Stanford University & NVIDIA
 - arxiv: https://arxiv.org/abs/2006.12356
 
Local Grid Rendering Networks for 3D Object Detection in Point Clouds
https://arxiv.org/abs/2007.02099
InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic Information Modeling
- intro: University of Maryland & Salesforce Research
 - arxiv: https://arxiv.org/abs/2007.08556
 
EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection
- intro: ECCV 2020
 - intro: Huazhong University of Science and Technology
 - arxiv: https://arxiv.org/abs/2007.08856
 - github: https://github.com/happinesslz/EPNet
 
Pillar-based Object Detection for Autonomous Driving
- intro: ECCV 2020
 - intro: MIT & Google
 - arxiv: https://arxiv.org/abs/2007.10323
 - github(TensorFlow): https://github.com/WangYueFt/pillar-od
 
Weakly Supervised 3D Object Detection from Lidar Point Cloud
- intro: ECCV 2020
 - intro: Beijing Institute of Technology & ETH Zurich & Inception Institute of Artificial Intelligence
 - arxiv: https://arxiv.org/abs/2007.11901
 - github: https://github.com/hlesmqh/WS3D
 
An LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds
- intro: ECCV 2020
 - intro: Google Research
 - arxiv: https://arxiv.org/abs/2007.12392
 
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud
https://arxiv.org/abs/2007.13373
Weakly Supervised 3D Object Detection from Point Clouds
- intro: ACM MM 2020
 - intro: MIT & Microsoft Research
 - arxiv: https://arxiv.org/abs/2007.13970
 - github: https://github.com/Zengyi-Qin/Weakly-Supervised-3D-Object-Detection
 
Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution
- intro: ECCV 2020
 - arxiv: https://arxiv.org/abs/2007.16100
 
Global Context Aware Convolutions for 3D Point Cloud Understanding
https://arxiv.org/abs/2008.02986
DeepLiDARFlow: A Deep Learning Architecture For Scene Flow Estimation Using Monocular Camera and Sparse LiDAR
- intro: IROS 2020
 - arxiv: https://arxiv.org/abs/2008.08136
 - github: https://github.com/dfki-av/DeepLiDARFlow
 
PointMixup: Augmentation for Point Clouds
- intro: ECCV 2020 spotlight
 - arxiv: https://arxiv.org/abs/2008.06374
 
Cross-Modality 3D Object Detection
- intro: WACV 2021
 - arxiv: https://arxiv.org/abs/2008.10436
 
LC-NAS: Latency Constrained Neural Architecture Search for Point Cloud Networks
https://arxiv.org/abs/2008.10309
Multi-View Fusion of Sensor Data for Improved Perception and Prediction in Autonomous Driving
- intro: Uber Advanced Technologies Group
 - arxiv: https://arxiv.org/abs/2008.11901
 
DV-ConvNet: Fully Convolutional Deep Learning on Point Clouds with Dynamic Voxelization and 3D Group Convolution
- intro: DESR Lab, Hong Kong University of Science and Technology
 - arxiv: https://arxiv.org/abs/2009.02918
 
Joint Pose and Shape Estimation of Vehicles from LiDAR Data
- intro: Argo AI & Microsoft & Carnegie Mellon University
 - arxiv: https://arxiv.org/abs/2009.03964
 
Deep Learning for 3D Point Cloud Understanding: A Survey
Multi-Frame to Single-Frame: Knowledge Distillation for 3D Object Detection
- intro: ECCV 2020 Workshop on Perception for Autonomous Driving
 - intro: MIT & Google & Stanford
 - arxiv: https://arxiv.org/abs/2009.11859
 
Monocular Differentiable Rendering for Self-Supervised 3D Object Detection
- intro: ECCV 2020
 - intro: Preferred Networks, Inc & Toyota Research Institute
 - arxiv: https://arxiv.org/abs/2009.14524
 
Torch-Points3D: A Modular Multi-Task Frameworkfor Reproducible Deep Learning on 3D Point Clouds
MLOD: Awareness of Extrinsic Perturbation in Multi-LiDAR 3D Object Detection for Autonomous Driving
- intro: The Hong Kong University of Science and Technology
 - project page: https://ram-lab.com/file/site/mlod/
 - arxiv: https://arxiv.org/abs/2010.11702
 
StrObe: Streaming Object Detection from LiDAR Packets
- intro: CoRL 2020
 - intro: Uber Advanced Technologies Group & University of Toronto
 - arxiv: https://arxiv.org/abs/2011.06425
 
MuSCLE: Multi Sweep Compression of LiDAR using Deep Entropy Models
- intro: NeurIPS 2020
 - intro: Uber Advanced Technologies Group & University of Waterloo & University of Toronto
 - arxiv: https://arxiv.org/abs/2011.07590
 
LiDAR-based Panoptic Segmentation via Dynamic Shifting Network
- intro: Nanyang Technological University & Chinese University of Hong Kong
 - intro: Rank 1st place in the leaderboard of SemanticKITTI Panoptic Segmentation (accessed at 2020-11-16)
 - arxiv: https://arxiv.org/abs/2011.11964
 - github: https://github.com/hongfz16/DS-Net
 
CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud
- intro: AAAI 2021
 - intro: The Chinese University of Hong Kong
 - arxiv: https://arxiv.org/abs/2012.03015
 - github: https://github.com/Vegeta2020/CIA-SSD
 
PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object Detection
- intro: Beihang University
 - arxiv: https://arxiv.org/abs/2012.10412
 
Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device
https://arxiv.org/abs/2012.13801
Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection
- intro: AAAI 2021
 - arxiv: https://arxiv.org/abs/2012.15712
 - github: https://github.com/djiajunustc/Voxel-R-CNN
 
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving
Self-Attention Based Context-Aware 3D Object Detection
- intro: University of Waterloo
 - arxiv: https://arxiv.org/abs/2101.02672
 - github: https://github.com/AutoVision-cloud/SA-Det3D
 
A Simple and Efficient Multi-task Network for 3D Object Detection and Road Understanding
ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection
- intro: CVPR 2021
 - arxiv: https://arxiv.org/abs/2103.05346
 - github: https://github.com/CVMI-Lab/ST3D
 
RangeDet:In Defense of Range View for LiDAR-based 3D Object Detection
https://arxiv.org/abs/2103.10039
Stereo CenterNet based 3D Object Detection for Autonomous Driving
https://arxiv.org/abs/2103.11071
M3DSSD: Monocular 3D Single Stage Object Detector
- intro: CVPR 2021
 - intro: Zhejiang University & Mohamed bin Zayed University of Artificial Intelligence & Inception Institute of Artificial Intelligence
 - arxiv: https://arxiv.org/abs/2103.13164
 
Delving into Localization Errors for Monocular 3D Object Detection
- intro: CVPR 2021
 - arxiv: https://arxiv.org/abs/2103.16237
 - github: https://github.com/xinzhuma/monodle
 
Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection
- github: CVPR 2021
 - arxiv: https://arxiv.org/abs/2103.16470
 - github: https://github.com/fudan-zvg/DDMP
 
GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection
- intro: CVPR 2021
 - arxiv: https://arxiv.org/abs/2103.17202
 
LiDAR R-CNN: An Efficient and Universal 3D Object Detector
- intro: CVPR 2021
 - intro: TuSimple
 - arxiv: https://arxiv.org/abs/2103.15297
 - github: https://github.com/tusimple/LiDAR_RCNN
 
HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object Detection
- intro: CVPR 2021 https://arxiv.org/abs/2104.00902
 
Group-Free 3D Object Detection via Transformers
- intro: University of Science and Technology of China & Microsoft Research Asia
 - arxiv: https://arxiv.org/abs/2104.00678
 - github: https://github.com/zeliu98/Group-Free-3D
 
Objects are Different: Flexible Monocular 3D Object Detection
- intro: CVPR 2021
 - arxiv: https://arxiv.org/abs/2104.02323
 - github: https://github.com/zhangyp15/MonoFlex
 
Geometry-based Distance Decomposition for Monocular 3D Object Detection
https://arxiv.org/abs/2104.03775
Geometry-aware data augmentation for monocular 3D object detection
https://arxiv.org/abs/2104.05858
OCM3D: Object-Centric Monocular 3D Object Detection
https://arxiv.org/abs/2104.06041
SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud
- intro: CVPR 2021
 - arxiv: https://arxiv.org/abs/2104.09804
 - github: https://github.com/Vegeta2020/SE-SSD
 
BEVDetNet: Bird’s Eye View LiDAR Point Cloud based Real-time 3D Object Detection for Autonomous Driving
https://arxiv.org/abs/2104.10780
Exploring 2D Data Augmentation for 3D Monocular Object Detection
https://arxiv.org/abs/2104.10786
Anchor-free 3D Detection
Object as Hotspots: An Anchor-Free 3D Object Detection Approach via Firing of Hotspots
- intro: Samsung Inc & Johns Hopkins University & South China University of Technology
 - keywords: Object as Hotspots (OHS)
 - arxiv: https://arxiv.org/abs/1912.12791
 
CenterNet3D: An Anchor free Object Detector for Autonomous Driving
- keywords: Non-Maximum Suppression free
 - arxiv: https://arxiv.org/abs/2007.07214
 - github: https://github.com/wangguojun2018/CenterNet3d
 
AFDet: Anchor Free One Stage 3D Object Detection
- intro: Horizon Robotics
 - intro: CVPR Workshop 2020
 - intro: Baseline detector for the 1st place solutions of Waymo Open Dataset Challenges 2020
 - arxiv: https://arxiv.org/abs/2006.12671
 
1st Place Solution for Waymo Open Dataset Challenge – 3D Detection and Domain Adaptation
- intro: Horizon Robotics
 - arxiv: https://arxiv.org/abs/2006.15505
 
3D Semantic Segmentation
PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation
- intro: CVPR 2020
 - arxiv: https://arxiv.org/abs/2003.14032
 - github: https://github.com/edwardzhou130/PolarSeg
 
Cloud Transformers
- intro: Samsung AI Center Moscow & Skolkovo Institute of Science and Technology
 - arxiv: https://arxiv.org/abs/2007.11679
 
Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic Segmentation
- intro: CUHK & ShanghaiTech University & SenseTime Research
 - arxiv: https://arxiv.org/abs/2008.01550
 - github: https://github.com/xinge008/Cylinder3D
 
Projected-point-based Segmentation: A New Paradigm for LiDAR Point Cloud Segmentation
https://arxiv.org/abs/2008.03928
pseudo-LiDAR
Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving
- intro: CVPR 2019
 - project page: https://mileyan.github.io/pseudo_lidar/
 - arxiv: https://arxiv.org/abs/1812.07179
 - gtihub(official): https://github.com/mileyan/pseudo_lidar
 
Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving
- intro: ICLR 2020 Poster
 - openreview: https://openreview.net/forum?id=BJedHRVtPB
 - github(official): https://github.com/mileyan/Pseudo_Lidar_V2
 
End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection
- intro: CVPR 2020
 - arxiv: https://arxiv.org/abs/2004.03080
 - github: https://github.com/mileyan/pseudo-LiDAR_e2e
 
Rethinking Pseudo-LiDAR Representation
- intro: ECCV 2020
 - arxiv: https://arxiv.org/abs/2008.04582
 - github: https://github.com/xinzhuma/patchnet
 
Demystifying Pseudo-LiDAR for Monocular 3D Object Detection
- intro: University of Trento & Fondazione Bruno Kessler & Facebook
 - arxiv: https://arxiv.org/abs/2012.05796
 
3D Detection and Tracking
Joint Monocular 3D Vehicle Detection and Tracking
- intro: ICCV 2019
 - project page: https://eborboihuc.github.io/Mono-3DT/
 - arxiv: https://arxiv.org/abs/1811.10742
 - github(official): https://github.com/ucbdrive/3d-vehicle-tracking
 
Center-based 3D Object Detection and Tracking
- intro: UT Austin
 - intro: 3D Object Detection and Tracking using center points in the bird-eye view.
 - arxiv: https://arxiv.org/abs/2006.11275
 - github: https://github.com/tianweiy/CenterPoint
 
3D Object Detection and Tracking Based on Streaming Data
- intro: ICRA 2020
 - arxiv: https://arxiv.org/abs/2009.06169
 
Uncertainty-Aware Voxel based 3D Object Detection and Tracking with von-Mises Loss
- intro: University of Michigan
 - arxiv: https://arxiv.org/abs/2011.02553
 
3D MOT
AutoSelect: Automatic and Dynamic Detection Selection for 3D Multi-Object Tracking
- intro: Carnegie Mellon University
 - arxiv: https://arxiv.org/abs/2012.05894
 
Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous Driving
- intro: Stanford University & Toyota Research Institute
 - arxiv: https://arxiv.org/abs/2012.13755
 
Monocular Quasi-Dense 3D Object Tracking
https://arxiv.org/abs/2103.07351
Transformer
Point Transformer
- intro: Ulm University
 - keywords: SortNet
 - arxiv: https://arxiv.org/abs/2011.00931
 
Temporal-Channel Transformer for 3D Lidar-Based Video Object Detection in Autonomous Driving
https://arxiv.org/abs/2011.13628
Point Transformer
- intro: University of Oxford & The Chinese University of Hong Kong & Intel Labs
 - arxiv: https://arxiv.org/abs/2012.09164
 
3D Object Detection with Pointformer
- intro: Tsinghua University & BNRist & Alexa AI, Amazon / Columbia University
 - arxiv: https://arxiv.org/abs/2012.11409
 
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
- intro: University of Maryland & Fudan University
 - arxiv: https://arxiv.org/abs/2104.11896
 
Projects
OpenLidarPerceptron
- intro: OpenLidarPerceptron is an open source project for LiDAR-based 3D scene perception.
 - github: https://github.com/open-mmlab/OpenLidarPerceptron
 
Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point Clouds
- github(PyTorch): https://github.com/maudzung/SFA3D
 
Resources
Awesome-Automanous-3D-Detection-Methods
https://github.com/tyjiang1997/awesome-Automanous-3D-detection-methods