Object Counting
Object Counting
Towards perspective-free object counting with deep learning
- intro: ECCV 2016. Counting CNN and Hydra CNN
 - paper: http://agamenon.tsc.uah.es/Investigacion/gram/publications/eccv2016-onoro.pdf
 - github: https://github.com/gramuah/ccnn
 - poster: http://www.eccv2016.org/files/posters/P-3B-26.pdf
 
Using Convolutional Neural Networks to Count Palm Trees in Satellite Images
Count-ception: Counting by Fully Convolutional Redundant Counting
https://arxiv.org/abs/1703.08710
Counting Objects with Faster R-CNN
- blog: https://softwaremill.com/counting-objects-with-faster-rcnn/
 - github: https://github.com/softberries/keras-frcnn
 
Drone-based Object Counting by Spatially Regularized Regional Proposal Network
https://arxiv.org/abs/1707.05972
FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle Counting in City Cameras
- intro: ICCV 2017. CMU & Universidade de Lisboa
 - arxiv: https://arxiv.org/abs/1707.09476
 
Representation Learning by Learning to Count
- intro: ICCV 2017 oral
 - arxiv: https://arxiv.org/abs/1708.06734
 
Leaf Counting with Deep Convolutional and Deconvolutional Networks
- intro: ICCV 2017 Workshop on Computer Vision Problems in Plant Phenotyping
 - arxiv: https://arxiv.org/abs/1708.07570
 
Improving Object Counting with Heatmap Regulation
https://arxiv.org/abs/1803.05494
Learning Short-Cut Connections for Object Counting
- keywords: Gated U-Net (GU-Net)
 - arxiv: https://arxiv.org/abs/1805.02919
 
Object Counting with Small Datasets of Large Images
https://arxiv.org/abs/1805.11123
Counting with Focus for Free
- intro: ICCV 2019
 - arxiv: https://arxiv.org/abs/1903.12206
 - github: https://github.com/shizenglin/Counting-with-Focus-for-Free
 
Dilated-Scale-Aware Attention ConvNet For Multi-Class Object Counting
https://arxiv.org/abs/2012.08149
Crowd Counting / Crowd Analysis
Large scale crowd analysis based on convolutional neural network
Deep People Counting in Extremely Dense Crowds
- intro: ACM 2015
 - paper: http://yangliang.github.io/pdf/sp055u.pdf
 
Crossing-line Crowd Counting with Two-phase Deep Neural Networks
- intro: ECCV 2016
 - paper: http://www.ee.cuhk.edu.hk/~rzhao/project/crossline_eccv16/ZhaoLZWeccv16.pdf
 - poster: http://www.eccv2016.org/files/posters/P-3C-41.pdf
 
Cross-scene Crowd Counting via Deep Convolutional Neural Networks
- intro: CVPR 2015
 - paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/zhangLWYcvpr15.pdf
 
Single-Image Crowd Counting via Multi-Column Convolutional Neural Network
- intro: CVPR 2016
 - paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf
 - paper: http://sist.shanghaitech.edu.cn/office/research/news/CVPR2016/paper/Single-Image%20Crowd%20Counting%20via%20Multi-Column%20Convolutional%20Neural%20Network.pdf
 - dataset(pwd: p1rv): http://pan.baidu.com/s/1gfyNBTh
 - slides: http://smartdsp.xmu.edu.cn/%E6%B1%87%E6%8A%A5pdf/crowd%20counting%E6%9E%97%E8%B4%A8%E9%94%90.pdf
 - github:https://github.com/svishwa/crowdcount-mcnn
 
CrowdNet: A Deep Convolutional Network for Dense Crowd Counting
- intro: ACM Multimedia (MM) 2016
 - arxiv: http://arxiv.org/abs/1608.06197
 - github(Caffe): https://github.com/davideverona/deep-crowd-counting_crowdnet
 
Crowd Counting by Adapting Convolutional Neural Networks with Side Information
Fully Convolutional Crowd Counting On Highly Congested Scenes
- intro: VISAPP 2017
 - arxiv: https://arxiv.org/abs/1612.00220
 
Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction
- intro: AAAI 2017
 - project page: https://www.microsoft.com/en-us/research/publication/deep-spatio-temporal-residual-networks-for-citywide-crowd-flows-prediction/
 - paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/ST-ResNet-AAAI17-Zhang.pdf
 - github: https://github.com/lucktroy/DeepST/tree/master/scripts/papers/AAAI17
 - ppt: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/DeepST-crowd-prediction.pptx
 - system: http://urbanflow.sigkdd.com.cn/
 
Multi-scale Convolutional Neural Networks for Crowd Counting
Mixture of Counting CNNs: Adaptive Integration of CNNs Specialized to Specific Appearance for Crowd Counting
https://arxiv.org/abs/1703.09393
Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking
https://arxiv.org/abs/1705.10118
ResnetCrowd: A Residual Deep Learning Architecture for Crowd Counting, Violent Behaviour Detection and Crowd Density Level Classification
- intro: AVSS 2017
 - arxiv: https://arxiv.org/abs/1705.10698
 
Image Crowd Counting Using Convolutional Neural Network and Markov Random Field
- intro: CVPR 2017
 - arxiv: https://arxiv.org/abs/1706.03725
 
A Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation
https://arxiv.org/abs/1707.01202
Spatiotemporal Modeling for Crowd Counting in Videos
- intro: ICCV 2017
 - arxiv: https://arxiv.org/abs/1707.07890
 
CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting
- intro: AVSS 2017 (14th International Conference on Advanced Video and Signal Based Surveillance)
 - arxiv: https://arxiv.org/abs/1707.09605
 
Switching Convolutional Neural Network for Crowd Counting
- intro: CVPR 2017. Indian Institute of Science
 - project page: http://val.serc.iisc.ernet.in/crowdcnn/
 - arxiv: https://arxiv.org/abs/1708.00199
 - github: https://github.com/val-iisc/crowd-counting-scnn
 
Generating High-Quality Crowd Density Maps using Contextual Pyramid CNNs
- intro: ICCV 2017
 - arxiv: https://arxiv.org/abs/1708.00953
 
Deep Spatial Regression Model for Image Crowd Counting
https://arxiv.org/abs/1710.09757
Crowd counting via scale-adaptive convolutional neural network
- intro: WACV 2-18. Tencent Youtu Lab
 - arxiv: https://arxiv.org/abs/1711.04433
 - github: https://github.com/miao0913/SaCNN-CrowdCounting-Tencent_Youtu
 
DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
- intro: CVPR 2018
 - arxiv: https://arxiv.org/abs/1712.06679
 
Structured Inhomogeneous Density Map Learning for Crowd Counting
https://arxiv.org/abs/1801.06642
Understanding Human Behaviors in Crowds by Imitating the Decision-Making Process
- intro: AAAI 2018
 - arxiv: https://arxiv.org/abs/1801.08391
 
Leveraging Unlabeled Data for Crowd Counting by Learning to Rank
- intro: CVPR 2018
 - arxiv: https://arxiv.org/abs/1803.03095
 
Crowd Counting via Adversarial Cross-Scale Consistency Pursuit
- intro: CVPR 2018
 - paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_Crowd_Counting_via_CVPR_2018_paper.pdf
 - github: https://github.com/Ling-Bao/ACSCP_cGAN
 
Crowd Counting with Deep Negative Correlation Learning
- intro: CVPR 2018
 - paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Shi_Crowd_Counting_With_CVPR_2018_paper.pdf
 - github: https://github.com/shizenglin/Deep-NCL
 
An Aggregated Multicolumn Dilated Convolution Network for Perspective-Free Counting
- intro: CVPR 2018 Workshop On Visual Understanding of Humans in Crowd Scene
 - arxiv: https://arxiv.org/abs/1804.07821
 
A Deeply-Recursive Convolutional Network for Crowd Counting
- intro: Xiamen University
 - arxiv: https://arxiv.org/abs/1805.05633
 
Crowd Counting by Adaptively Fusing Predictions from an Image Pyramid
https://arxiv.org/abs/1805.06115
Attention to Head Locations for Crowd Counting
https://arxiv.org/abs/1806.10287
Crowd Counting with Density Adaption Networks
https://arxiv.org/abs/1806.10040
Perspective-Aware CNN For Crowd Counting
https://arxiv.org/abs/1807.01989
Crowd Counting using Deep Recurrent Spatial-Aware Network
- intro: IJCAI 2018
 - arxiv: https://arxiv.org/abs/1807.00601
 
Top-Down Feedback for Crowd Counting Convolutional Neural Network
https://arxiv.org/abs/1807.08881
Composition Loss for Counting, Density Map Estimation and Localization in Dense Crowds
- intro: ECCV 2018
 - arxiv: https://arxiv.org/abs/1808.01050
 
Stacked Pooling: Improving Crowd Counting by Boosting Scale Invariance
In Defense of Single-column Networks for Crowd Counting
https://arxiv.org/abs/1808.06133
Attentive Crowd Flow Machines
- intro: ACM MM, full paper
 - arxiv: https://arxiv.org/abs/1809.00101
 
Context-Aware Crowd Counting
- intro: CVPR 2019
 - arxiv: https://arxiv.org/abs/1811.10452
 - github: https://github.com/weizheliu/Context-Aware-Crowd-Counting
 
ADCrowdNet: An Attention-injective Deformable Convolutional Network for Crowd Understanding
https://arxiv.org/abs/1811.11968
Learning from Synthetic Data for Crowd Counting in the Wild
- intro: CVPR 2019
 - project page: https://gjy3035.github.io/GCC-CL/
 - arxiv: https://arxiv.org/abs/1903.03303
 
Point in, Box out: Beyond Counting Persons in Crowds
- intro: CVPR 2019
 - arxiv: https://arxiv.org/abs/1904.01333
 
Crowd Transformer Network
https://arxiv.org/abs/1904.02774
DENet: A Universal Network for Counting Crowd with Varying Densities and Scales
https://arxiv.org/abs/1904.08056
PCC Net: Perspective Crowd Counting via Spatial Convolutional Network
- intro: IEEE T-CSVT
 - arxiv: https://arxiv.org/abs/1905.10085
 - github: https://github.com/gjy3035/PCC-Net
 
Dense Scale Network for Crowd Counting
https://arxiv.org/abs/1906.09707
Inverse Attention Guided Deep Crowd Counting Network
- intro: AVSS 2019
 - arxiv: https://arxiv.org/abs/1907.01193
 
Locality-constrained Spatial Transformer Network for Video Crowd Counting
- intro: ICME 2019 Oral
 - arxiv: https://arxiv.org/abs/1907.07911
 
HA-CCN: Hierarchical Attention-based Crowd Counting Network
- intro: TIP 2019
 - arxiv: https://arxiv.org/abs/1907.10255
 
Learn to Scale: Generating Multipolar Normalized Density Map for Crowd Counting
- intro: ICCV 2019
 - arxiv: https://arxiv.org/abs/1907.12428**
 
Deep Density-aware Count Regressor
https://arxiv.org/abs/1908.03314
Bayesian Loss for Crowd Count Estimation with Point Supervision
- intro: ICCV 2019 oral
 - arxiv: https://arxiv.org/abs/1908.03684
 - github: https://github.com/ZhihengCV/Bayesian-Crowd-Counting
 
Crowd Counting with Deep Structured Scale Integration Network
- intro: ICCV 2019
 - arxiv: https://arxiv.org/abs/1908.08692
 
Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting
- intro: ICCV 2019
 - arxiv: https://arxiv.org/abs/1908.10937
 
Awesome Crowd Counting
https://github.com/gjy3035/Awesome-Crowd-Counting
Learning Spatial Awareness to Improve Crowd Counting
- intro: ICCV 2019 oral
 - intro: Southwest Jiaotong University & Carnegie Mellon University & Microsoft Research
 - keywords: SPatial Awareness Network (SPANet), Maximum Excess over Pixels (MEP) loss
 - arxiv: https://arxiv.org/abs/1909.07057
 
Perspective-Guided Convolution Networks for Crowd Counting
- intro: ICCV 2019
 - arxiv: https://arxiv.org/abs/1909.06966
 - github: https://github.com/Zhaoyi-Yan/PGCNet
 
Pushing the Frontiers of Unconstrained Crowd Counting: New Dataset and Benchmark Method
- intro: ICCV 2019
 - arxiv: https://arxiv.org/abs/1910.12384
 
Feature-aware Adaptation and Structured Density Alignment for Crowd Counting in Video Surveillance
https://arxiv.org/abs/1912.03672
AutoScale: Learning to Scale for Crowd Counting
https://arxiv.org/abs/1912.09632