Unsupervised Learning
Restricted Boltzmann Machine (RBM)
Sparse Coding
Fast Convolutional Sparse Coding in the Dual Domain
https://arxiv.org/abs/1709.09479
Auto-encoder
Papers
On Random Weights and Unsupervised Feature Learning
- intro: ICML 2011
 - paper: http://www.robotics.stanford.edu/~ang/papers/icml11-RandomWeights.pdf
 
Unsupervised Learning of Spatiotemporally Coherent Metrics
Unsupervised Learning of Visual Representations using Videos
- intro: ICCV 2015
 - project page: http://www.cs.cmu.edu/~xiaolonw/unsupervise.html
 - arxiv: http://arxiv.org/abs/1505.00687
 - paper: http://www.cs.toronto.edu/~nitish/depth_oral.pdf
 - github: https://github.com/xiaolonw/caffe-video_triplet
 
Unsupervised Visual Representation Learning by Context Prediction
- intro: ICCV 2015
 - homepage: http://graphics.cs.cmu.edu/projects/deepContext/
 - arxiv: http://arxiv.org/abs/1505.05192
 - github: https://github.com/cdoersch/deepcontext
 
Unsupervised Learning on Neural Network Outputs
- intro: “use CNN trained on the ImageNet of 1000 classes to the ImageNet of over 20000 classes”
 - arxiv: http://arxiv.org/abs/1506.00990
 - github: https://github.com/yaolubrain/ULNNO
 
Unsupervised Domain Adaptation by Backpropagation
- intro: ICML 2015
 - project page: http://sites.skoltech.ru/compvision/projects/grl/
 - paper: http://sites.skoltech.ru/compvision/projects/grl/files/paper.pdf
 - github: https://github.com/ddtm/caffe/tree/grl
 
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
- arxiv: http://arxiv.org/abs/1603.09246
 - notes: http://www.inference.vc/notes-on-unsupervised-learning-of-visual-representations-by-solving-jigsaw-puzzles/
 
Tagger: Deep Unsupervised Perceptual Grouping

- intro: NIPS 2016
 - arxiv: https://arxiv.org/abs/1606.06724
 - github: https://github.com/CuriousAI/tagger
 
Regularization for Unsupervised Deep Neural Nets
Sparse coding: A simple exploration
- blog: https://blog.metaflow.fr/sparse-coding-a-simple-exploration-152a3c900a7c#.o7g2jk9zi
 - github: https://github.com/metaflow-ai/blog/tree/master/sparse-coding
 
Navigating the unsupervised learning landscape
Unsupervised Learning using Adversarial Networks
- intro: Facebook AI Research
 - youtube: https://www.youtube.com/watch?v=lalg1CuNB30
 
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
- intro: UC Berkeley
 - project page: https://richzhang.github.io/splitbrainauto/
 - arxiv: https://arxiv.org/abs/1611.09842
 - github: https://github.com/richzhang/splitbrainauto
 
Learning Features by Watching Objects Move
- intro: CVPR 2017. Facebook AI Research & UC Berkeley
 - arxiv: https://arxiv.org/abs/1612.06370
 - github((Caffe+Torch): https://github.com/pathak22/unsupervised-video
 
CNN features are also great at unsupervised classification
- intro: Arts et Métiers ParisTech
 - arxiv: https://arxiv.org/abs/1707.01700
 
Supervised Convolutional Sparse Coding
https://arxiv.org/abs/1804.02678
Momentum Contrast for Unsupervised Visual Representation Learning
- intro: CVPR 2020
 - intro: Facebook AI Research (FAIR)
 - intro: MoCo
 - arxiv: https://arxiv.org/abs/1911.05722
 - github(official, Pytorch): https://github.com/facebookresearch/moco
 
Improved Baselines with Momentum Contrastive Learning
- intro: Facebook AI Research (FAIR)
 - intro: MoCo v2
 - arxiv: https://arxiv.org/abs/2003.04297
 - github: https://github.com/facebookresearch/moco
 
Clustering
Deep clustering: Discriminative embeddings for segmentation and separation
- arxiv: https://arxiv.org/abs/1508.04306
 - github(Keras): https://github.com/jcsilva/deep-clustering
 
Neural network-based clustering using pairwise constraints
- intro: ICLR 2016
 - arxiv: https://arxiv.org/abs/1511.06321
 
Unsupervised Deep Embedding for Clustering Analysis
- intro: ICML 2016. Deep Embedded Clustering (DEC)
 - arxiv: https://arxiv.org/abs/1511.06335
 - github: https://github.com/piiswrong/dec
 
Joint Unsupervised Learning of Deep Representations and Image Clusters
- intro: CVPR 2016
 - arxiv: https://arxiv.org/abs/1604.03628
 - github(Torch): https://github.com/jwyang/joint-unsupervised-learning
 
Single-Channel Multi-Speaker Separation using Deep Clustering
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering
Deep Unsupervised Clustering with Gaussian Mixture Variational
- arxiv: https://arxiv.org/abs/1611.02648
 - github: https://github.com/Nat-D/GMVAE
 
Variational Deep Embedding: A Generative Approach to Clustering
A new look at clustering through the lens of deep convolutional neural networks
- intro: University of Central Florida & Purdue University
 - arxiv: https://arxiv.org/abs/1706.05048
 
Deep Subspace Clustering Networks
- intro: NIPS 2017
 - arxiv: https://arxiv.org/abs/1709.02508
 
SpectralNet: Spectral Clustering using Deep Neural Networks
Clustering with Deep Learning: Taxonomy and New Methods
- intro: Technical University of Munich
 - arxiv: https://arxiv.org/abs/1801.07648
 - github: https://github.com/elieJalbout/Clustering-with-Deep-learning
 
Deep Continuous Clustering
- arxiv: https://arxiv.org/abs/1803.01449
 - github: https://github.com/shahsohil/DCC
 
Learning to Cluster
- openreview: https://openreview.net/forum?id=HkWTqLsIz
 - github: https://github.com/kutoga/learning2cluster
 
Learning Neural Models for End-to-End Clustering
- intro: ANNPR
 - arxiv: https://arxiv.org/abs/1807.04001
 
Deep Clustering for Unsupervised Learning of Visual Features
- intro: ECCV 2018
 - arxiv: https://arxiv.org/abs/1807.05520
 
Improving Image Clustering With Multiple Pretrained CNN Feature Extractors
- intro: Poster presentation at BMVC 2018
 - arxiv: https://arxiv.org/abs/1807.07760
 
Deep clustering: On the link between discriminative models and K-means
https://arxiv.org/abs/1810.04246
Deep Density-based Image Clustering
https://arxiv.org/abs/1812.04287
Deep Representation Learning Characterized by Inter-class Separation for Image Clustering
- intro: WACV 2019
 - arxiv: https://arxiv.org/abs/1901.06474
 
Deep Metric Learning Meets Deep Clustering: An Novel Unsupervised Approach for Feature Embedding
- intro: BMVC 2020
 - arxiv: https://arxiv.org/abs/2009.04091
 
Contrastive Clustering
https://arxiv.org/abs/2009.09687
Deep Clustering by Semantic Contrastive Learning
- intro: Queen Mary University of London
 - arxiv: https://arxiv.org/abs/2103.02662
 
Auto-encoder
Auto-Encoding Variational Bayes
The Potential Energy of an Autoencoder
- intro: PAMI 2014
 - paper: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.698.4921&rep=rep1&type=pdf
 
Importance Weighted Autoencoders
- paper: http://arxiv.org/abs/1509.00519
 - github: https://github.com/yburda/iwae
 
Review of Auto-Encoders
- intro: Piotr Mirowski, Microsoft Bing London, 2014
 - slides: https://piotrmirowski.files.wordpress.com/2014/03/piotrmirowski_2014_reviewautoencoders.pdf
 - github: https://github.com/piotrmirowski/Tutorial_AutoEncoders/
 
Stacked What-Where Auto-encoders
Ladder Variational Autoencoders
How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks
Rank Ordered Autoencoders
- arxiv: http://arxiv.org/abs/1605.01749
 - github: https://github.com/paulbertens/rank-ordered-autoencoder
 
Decoding Stacked Denoising Autoencoders
Keras autoencoders (convolutional/fcc)
Building Autoencoders in Keras
Review of auto-encoders
- intro: Tutorial code for Auto-Encoders, implementing Marc’Aurelio Ranzato’s Sparse Encoding Symmetric Machine and testing it on the MNIST handwritten digits data.
 - paper: https://github.com/piotrmirowski/Tutorial_AutoEncoders/blob/master/PiotrMirowski_2014_ReviewAutoEncoders.pdf
 - github: https://github.com/piotrmirowski/Tutorial_AutoEncoders
 
Autoencoders: Torch implementations of various types of autoencoders
- intro: AE / SparseAE / DeepAE / ConvAE / UpconvAE / DenoisingAE / VAE / AdvAE
 - github: https://github.com/Kaixhin/Autoencoders
 
Tutorial on Variational Autoencoders
Variational Autoencoders Explained
- blog: http://kvfrans.com/variational-autoencoders-explained/
 - github: https://github.com/kvfrans/variational-autoencoder
 
Introducing Variational Autoencoders (in Prose and Code)
- blog: http://blog.fastforwardlabs.com/post/148842796218/introducing-variational-autoencoders-in-prose-and
 
Under the Hood of the Variational Autoencoder (in Prose and Code)
- blog: http://blog.fastforwardlabs.com/post/149329060653/under-the-hood-of-the-variational-autoencoder-in
 
The Unreasonable Confusion of Variational Autoencoders
Variational Autoencoder for Deep Learning of Images, Labels and Captions
- intro: NIPS 2016. Duke University & Nokia Bell Labs
 - paper: http://people.ee.duke.edu/~lcarin/Yunchen_nips_2016.pdf
 
Convolutional variational autoencoder with PyMC3 and Keras
Pixelvae: A Latent Variable Model For Natural Images
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
Variational Lossy Autoencoder
Convolutional Autoencoders
Convolutional Autoencoders in Tensorflow
A Deep Convolutional Auto-Encoder with Pooling - Unpooling Layers in Caffe
Deep Matching Autoencoders
- intro: University of Edinburgh & RIKEN AIP
 - keywords: Deep Matching Autoencoders (DMAE)
 - arxiv: https://arxiv.org/abs/1711.06047
 
Understanding Autoencoders with Information Theoretic Concepts
- intro: University of Florida
 - arxiv: https://arxiv.org/abs/1804.00057
 
Hyperspherical Variational Auto-Encoders
- intro: University of Amsterdam
 - project page: https://nicola-decao.github.io/s-vae/
 - arxiv: https://arxiv.org/abs/1804.00891
 - github: https://github.com/nicola-decao/s-vae
 
Spatial Frequency Loss for Learning Convolutional Autoencoders
https://arxiv.org/abs/1806.02336
DAQN: Deep Auto-encoder and Q-Network
https://arxiv.org/abs/1806.00630
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
- intro: Google Brain
 - arxiv: https://arxiv.org/abs/1807.07543
 - github: https://github.com/brain-research/acai
 
RBM (Restricted Boltzmann Machine)
Papers
Deep Boltzmann Machines
- author: Ruslan Salakhutdinov, Geoffrey Hinton
 - paper: http://www.cs.toronto.edu/~hinton/absps/dbm.pdf
 
On the Equivalence of Restricted Boltzmann Machines and Tensor Network States
Matrix Product Operator Restricted Boltzmann Machines
https://arxiv.org/abs/1811.04608
Blogs
A Tutorial on Restricted Boltzmann Machines
http://xiangjiang.live/2016/02/12/a-tutorial-on-restricted-boltzmann-machines/
Dreaming of names with RBMs
- blog: http://colinmorris.github.io/blog/dreaming-rbms
 - github: https://github.com/colinmorris/char-rbm
 
on Cheap Learning: Partition Functions and RBMs
- blog: https://charlesmartin14.wordpress.com/2016/09/10/on-cheap-learning-partition-functions-and-rbms/
 
Improving RBMs with physical chemistry
- blog: https://charlesmartin14.wordpress.com/2016/10/21/improving-rbms-with-physical-chemistry/
 - github: https://github.com/charlesmartin14/emf-rbm/blob/master/EMF_RBM_Test.ipynb
 
Projects
Restricted Boltzmann Machine (Haskell)
- intro: “This is an implementation of two machine learning algorithms, Contrastive Divergence and Back-propagation.”
 - github: https://github.com/aeyakovenko/rbm
 
tensorflow-rbm: Tensorflow implementation of Restricted Boltzman Machine
- intro: Tensorflow implementation of Restricted Boltzman Machine for layerwise pretraining of deep autoencoders.
 - github: https://github.com/meownoid/tensorfow-rbm
 
Videos
Modelling a text corpus using Deep Boltzmann Machines
Foundations of Unsupervised Deep Learning
- intro: Ruslan Salakhutdinov [CMU]
 - youtube: https://www.youtube.com/watch?v=rK6bchqeaN8
 - mirror: https://pan.baidu.com/s/1mi4nCow
 - sildes: http://www.cs.cmu.edu/~rsalakhu/talk_unsup.pdf