How to Install gcc/g++ 4.7.2 on Cygwin
Commands To Suppress Some Building Errors With Visual Studio
Here are some commands you would probably frequently use when you’re building Linux codes with VS2013~VS2015. Go to “C/C++ - Project - Properties - Additional Options”, add following commands(each command separated by one blank):
Glog Build Problems on Windows X86 and Visual Studio 2015
I git clone glog from https://github.com/google/glog.
Gflags Build Problems on Windows X86 and Visual Studio 2015
Gflags Build Problems on Windows X86 and Visual Studio 2015
Horrible Wired Errors Come From Simple Stupid Mistake
Several days ago I was transplanting some codes from Linux to Windows x86 platform.
Visual Question Answering
Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks
Visualizing and Interpreting Convolutional Neural Network
Papers
Deconvolutional Networks
- paper: http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf
- video: https://ipam.wistia.com/medias/zd0qnekkwc
- presentation: https://mathinstitutes.org/videos/videos/3295
Visualizing and Understanding Convolutional Network
- intro: ECCV 2014
- arxiv: http://arxiv.org/abs/1311.2901
- slides: https://courses.cs.washington.edu/courses/cse590v/14au/cse590v_dec5_DeepVis.pdf
- slides: http://videolectures.net/site/normal_dl/tag=921098/eccv2014_zeiler_convolutional_networks_01.pdf
- video: http://videolectures.net/eccv2014_zeiler_convolutional_networks/
- chs: http://blog.csdn.net/kklots/article/details/17136059
- github: https://github.com/piergiaj/caffe-deconvnet
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
- intro: ICLR 2014 workshop
- arxiv: http://arxiv.org/abs/1312.6034
- github: https://github.com/yasunorikudo/vis-cnn
Understanding Deep Image Representations by Inverting Them
deepViz: Visualizing Convolutional Neural Networks for Image Classification
- paper: http://vis.berkeley.edu/courses/cs294-10-fa13/wiki/images/f/fd/DeepVizPaper.pdf
- github: https://github.com/bruckner/deepViz
Inverting Convolutional Networks with Convolutional Networks
Understanding Neural Networks Through Deep Visualization
- project page: http://yosinski.com/deepvis
- arxiv: http://arxiv.org/abs/1506.06579
- github: https://github.com/yosinski/deep-visualization-toolbox
Visualizing Higher-Layer Features of a Deep Network
Generative Modeling of Convolutional Neural Networks
- project page: http://www.stat.ucla.edu/~yang.lu/Project/generativeCNN/main.html
- arxiv: http://arxiv.org/abs/1412.6296
- code: http://www.stat.ucla.edu/~yang.lu/Project/generativeCNN/doc/caffe-generative.zip
Understanding Intra-Class Knowledge Inside CNN
Learning FRAME Models Using CNN Filters for Knowledge Visualization
- project page: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/main.html
- arxiv: http://arxiv.org/abs/1509.08379
- code: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/doc/code.zip
Convergent Learning: Do different neural networks learn the same representations?
- intro: ICLR 2016
- arxiv: http://arxiv.org/abs/1511.07543
- github: https://github.com/yixuanli/convergent_learning
- video: http://videolectures.net/iclr2016_yosinski_convergent_learning/
Visualizing and Understanding Deep Texture Representations
- homepage: http://vis-www.cs.umass.edu/texture/
- arxiv: http://arxiv.org/abs/1511.05197
- paper: https://people.cs.umass.edu/~smaji/papers/texture-cvpr16.pdf
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
An Interactive Node-Link Visualization of Convolutional Neural Networks
- homepage: http://scs.ryerson.ca/~aharley/vis/
- code: http://scs.ryerson.ca/~aharley/vis/source.zip
- demo: http://scs.ryerson.ca/~aharley/vis/conv/
- review: http://www.popsci.com/gaze-inside-mind-artificial-intelligence
Learning Deep Features for Discriminative Localization
- project page: http://cnnlocalization.csail.mit.edu/
- arxiv: http://arxiv.org/abs/1512.04150
- github: https://github.com/metalbubble/CAM
- blog: http://jacobcv.blogspot.com/2016/08/class-activation-maps-in-keras.html
- github: https://github.com/jacobgil/keras-cam
Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks
- intro: Visualization for Deep Learning workshop. ICML 2016
- arxiv: http://arxiv.org/abs/1602.03616
- homepage: http://www.evolvingai.org/nguyen-yosinski-clune-2016-multifaceted-feature
- github: https://github.com/Evolving-AI-Lab/mfv
A New Method to Visualize Deep Neural Networks
A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks
VisualBackProp: visualizing CNNs for autonomous driving
VisualBackProp: efficient visualization of CNNs
Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
- arxiv: https://arxiv.org/abs/1610.02391
- github: https://github.com/ramprs/grad-cam/
- github(Keras): https://github.com/jacobgil/keras-grad-cam
- github(TensorFlow): https://github.com/Ankush96/grad-cam.tensorflow
Grad-CAM: Why did you say that?
- intro: NIPS 2016 Workshop on Interpretable Machine Learning in Complex Systems
- intro: extended abstract version of arXiv:1610.02391
- arxiv: https://arxiv.org/abs/1611.07450
Visualizing Residual Networks
- intro: UC Berkeley CS 280 final project report
- arxiv: https://arxiv.org/abs/1701.02362
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
- intro: University of Amsterdam & Canadian Institute of Advanced Research & Vrije Universiteit Brussel
- intro: ICLR 2017
- arxiv: https://arxiv.org/abs/1702.04595
- github: https://github.com/lmzintgraf/DeepVis-PredDiff
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
- intro: Georgia Tech & Facebook
- arxiv: https://arxiv.org/abs/1704.01942
Picasso: A Neural Network Visualizer
- arxiv: https://arxiv.org/abs/1705.05627
- github: https://github.com/merantix/picasso
- blog: https://medium.com/merantix/picasso-a-free-open-source-visualizer-for-cnns-d8ed3a35cfc5
CNN Fixations: An unraveling approach to visualize the discriminative image regions
A Forward-Backward Approach for Visualizing Information Flow in Deep Networks
- intro: NIPS 2017 Symposium on Interpretable Machine Learning. Iowa State University
- arxiv: https://arxiv.org/abs/1711.06221
Using KL-divergence to focus Deep Visual Explanation
https://arxiv.org/abs/1711.06431
An Introduction to Deep Visual Explanation
- intro: NIPS 2017 - Workshop Interpreting, Explaining and Visualizing Deep Learning
- arxiv: https://arxiv.org/abs/1711.09482
Visual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks
https://arxiv.org/abs/1712.06302
Visualizing the Loss Landscape of Neural Nets
- intro: University of Maryland & United States Naval Academy
- arxiv: https://arxiv.org/abs/1712.09913
Visualizing Deep Similarity Networks
https://arxiv.org/abs/1901.00536
Interpreting Convolutional Neural Networks
Network Dissection: Quantifying Interpretability of Deep Visual Representations
- intro: CVPR 2017 oral. MIT
- project page: http://netdissect.csail.mit.edu/
- arxiv: https://arxiv.org/abs/1704.05796
- github: https://github.com/CSAILVision/NetDissect
Interpreting Deep Visual Representations via Network Dissection
https://arxiv.org/abs/1711.05611
Methods for Interpreting and Understanding Deep Neural Networks
- intro: Technische Universit¨at Berlin & Fraunhofer Heinrich Hertz Institute
- arxiv: https://arxiv.org/abs/1706.07979
SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability
- intro: NIPS 2017. Google Brain & Uber AI Labs
- arxiv: https://arxiv.org/abs/1706.05806
- github: https://github.com/google/svcca/
- blog: https://research.googleblog.com/2017/11/interpreting-deep-neural-networks-with.html
Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples
- intro: Tsinghua University
- arxiv: https://arxiv.org/abs/1708.05493
Interpretable Convolutional Neural Networks
https://arxiv.org/abs/1710.00935
Interpreting Convolutional Neural Networks Through Compression
- intro: NIPS 2017 Symposium on Interpretable Machine Learning
- arxiv: https://arxiv.org/abs/1711.02329
Interpreting Deep Neural Networks
Interpreting CNNs via Decision Trees
https://arxiv.org/abs/1802.00121
Visual Interpretability for Deep Learning: a Survey
https://arxiv.org/abs/1802.00614
Interpreting Deep Classifier by Visual Distillation of Dark Knowledge
- intro: University of Edinburgh & Huawei Research America
- arxiv: https://arxiv.org/abs/1803.04042
How convolutional neural network see the world - A survey of convolutional neural network visualization methods
- intro: Mathematical Foundations of Computing. George Mason University & Clarkson University
- arxiv: https://arxiv.org/abs/1804.11191
Understanding Regularization to Visualize Convolutional Neural Networks
- intro: Konica Minolta Laboratory Europe & Technical University of Munich
- arxiv: https://arxiv.org/abs/1805.00071
Deeper Interpretability of Deep Networks
- intro: University of Glasgow & University of Oxford & University of California
- arxiv: https://arxiv.org/abs/1811.07807
Interpretable CNNs
https://arxiv.org/abs/1901.02413
Explaining AlphaGo: Interpreting Contextual Effects in Neural Networks
https://arxiv.org/abs/1901.02184
Interpretable BoW Networks for Adversarial Example Detection
https://arxiv.org/abs/1901.02229
Deep Features Analysis with Attention Networks
- intro: In AAAI-19 Workshop on Network Interpretability for Deep Learning
- arxiv: https://arxiv.org/abs/1901.10042
Understanding Neural Networks via Feature Visualization: A survey
- intro: A book chapter in an Interpretable ML book (http://www.interpretable-ml.org/book/)
- arxiv: https://arxiv.org/abs/1904.08939
Explaining Neural Networks via Perturbing Important Learned Features
https://arxiv.org/abs/1911.11081
Interpreting Adversarially Trained Convolutional Neural Networks
- intro: ICML 2019
- arxiv: https://arxiv.org/abs/1905.09797
- github: https://github.com/PKUAI26/AT-CNN
Projects
Interactive Deep Neural Net Hallucinations
- project page: http://317070.github.io/Dream/
- github: https://github.com/317070/Twitch-plays-LSD-neural-net
torch-visbox
draw_convnet: Python script for illustrating Convolutional Neural Network (ConvNet)
Caffe prototxt visualization
- intro: Recommended by Kaiming He
- github: https://github.com/ethereon/netscope
- quickstart: http://ethereon.github.io/netscope/quickstart.html
- demo: http://ethereon.github.io/netscope/#/editor
Keras Visualization Toolkit
mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models
- project page: http://vision03.csail.mit.edu/cnn_art/
- github: https://github.com/donglaiw/mNeuron
cnnvis-pytorch
- intro: visualization of CNN in PyTorch
- github: https://github.com/leelabcnbc/cnnvis-pytorch
VisualDL
- intro: A platform to visualize the deep learning process
- homepage: http://visualdl.paddlepaddle.org/
- github: https://github.com/PaddlePaddle/VisualDL
Blogs
“Visualizing GoogLeNet Classes”
http://auduno.com/post/125362849838/visualizing-googlenet-classes
Visualizing CNN architectures side by side with mxnet
How convolutional neural networks see the world: An exploration of convnet filters with Keras
- blog: http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
- github: https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py
Visualizing Deep Learning with t-SNE (Tutorial and Video)
- blog: https://medium.com/@awjuliani/visualizing-deep-learning-with-t-sne-tutorial-and-video-e7c59ee4080c#.ubhijafw7
- github: https://github.com/awjuliani/3D-TSNE
Peeking inside Convnets
Visualizing Features from a Convolutional Neural Network
- blog: http://kvfrans.com/visualizing-features-from-a-convolutional-neural-network/
- github: https://github.com/kvfrans/feature-visualization
Visualizing Deep Neural Networks Classes and Features
http://ankivil.com/visualizing-deep-neural-networks-classes-and-features/
Visualizing parts of Convolutional Neural Networks using Keras and Cats
- blog: https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59#.bt6bb13dk
- github: https://github.com/erikreppel/visualizing_cnns
Visualizing convolutional neural networks
- intro: How to build convolutional neural networks from scratch w/ Tensorflow
- blog: https://www.oreilly.com/ideas/visualizing-convolutional-neural-networks
- github: https://github.com//wagonhelm/Visualizing-Convnets/
Tools
Topological Visualisation of a Convolutional Neural Network
http://terencebroad.com/convnetvis/vis.html
Visualization of Places-CNN and ImageNet CNN
- homepage: http://places.csail.mit.edu/visualizationCNN.html
- DrawCNN: http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html
Visualization of a feed forward Neural Network using MNIST dataset
- homepage: http://nn-mnist.sennabaum.com/
- github: https://github.com/csenn/nn-visualizer
CNNVis: Towards Better Analysis of Deep Convolutional Neural Networks.
http://shixialiu.com/publications/cnnvis/demo/
Quiver: Interactive convnet features visualization for Keras
- homepage: https://jakebian.github.io/quiver/
- github: https://github.com/jakebian/quiver
Netron
- intro: Visualizer for deep learning and machine learning models
- github: https://github.com/lutzroeder/netron