| Method | backbone | test size | VOC2007 | VOC2010 | VOC2012 | ILSVRC 2013 | MSCOCO 2015 | Speed | 
|---|---|---|---|---|---|---|---|---|
| OverFeat | 24.3% | |||||||
| R-CNN | AlexNet | 58.5% | 53.7% | 53.3% | 31.4% | |||
| R-CNN | VGG16 | 66.0% | ||||||
| SPP_net | ZF-5 | 54.2% | 31.84% | |||||
| DeepID-Net | 64.1% | 50.3% | ||||||
| NoC | 73.3% | 68.8% | ||||||
| Fast-RCNN | VGG16 | 70.0% | 68.8% | 68.4% | 19.7%(@[0.5-0.95]), 35.9%(@0.5) | |||
| MR-CNN | 78.2% | 73.9% | ||||||
| Faster-RCNN | VGG16 | 78.8% | 75.9% | 21.9%(@[0.5-0.95]), 42.7%(@0.5) | 198ms | |||
| Faster-RCNN | ResNet101 | 85.6% | 83.8% | 37.4%(@[0.5-0.95]), 59.0%(@0.5) | ||||
| YOLO | 63.4% | 57.9% | 45 fps | |||||
| YOLO VGG-16 | 66.4% | 21 fps | ||||||
| YOLOv2 | 448x448 | 78.6% | 73.4% | 21.6%(@[0.5-0.95]), 44.0%(@0.5) | 40 fps | |||
| SSD | VGG16 | 300x300 | 77.2% | 75.8% | 25.1%(@[0.5-0.95]), 43.1%(@0.5) | 46 fps | ||
| SSD | VGG16 | 512x512 | 79.8% | 78.5% | 28.8%(@[0.5-0.95]), 48.5%(@0.5) | 19 fps | ||
| SSD | ResNet101 | 300x300 | 28.0%(@[0.5-0.95]) | 16 fps | ||||
| SSD | ResNet101 | 512x512 | 31.2%(@[0.5-0.95]) | 8 fps | ||||
| DSSD | ResNet101 | 300x300 | 28.0%(@[0.5-0.95]) | 8 fps | ||||
| DSSD | ResNet101 | 500x500 | 33.2%(@[0.5-0.95]) | 6 fps | ||||
| ION | 79.2% | 76.4% | ||||||
| CRAFT | 75.7% | 71.3% | 48.5% | |||||
| OHEM | 78.9% | 76.3% | 25.5%(@[0.5-0.95]), 45.9%(@0.5) | |||||
| R-FCN | ResNet50 | 77.4% | 0.12sec(K40), 0.09sec(TitianX) | |||||
| R-FCN | ResNet101 | 79.5% | 0.17sec(K40), 0.12sec(TitianX) | |||||
| R-FCN(ms train) | ResNet101 | 83.6% | 82.0% | 31.5%(@[0.5-0.95]), 53.2%(@0.5) | ||||
| PVANet 9.0 | 84.9% | 84.2% | 750ms(CPU), 46ms(TitianX) | |||||
| RetinaNet | ResNet101-FPN | |||||||
| Light-Head R-CNN | Xception* | 800/1200 | 31.5%@[0.5:0.95] | 95 fps | ||||
| Light-Head R-CNN | Xception* | 700/1100 | 30.7%@[0.5:0.95] | 102 fps | 
Object Detection
Natural Language Processing
Tutorials

Practical Neural Networks for NLP
- intro: EMNLP 2016
 - github: https://github.com/clab/dynet_tutorial_examples
 
Structured Neural Networks for NLP: From Idea to Code
- slides: https://github.com/neubig/yrsnlp-2016/blob/master/neubig16yrsnlp.pdf
 - github: https://github.com/neubig/yrsnlp-2016
 
Understanding Deep Learning Models in NLP
http://nlp.yvespeirsman.be/blog/understanding-deeplearning-models-nlp/
Deep learning for natural language processing, Part 1
https://softwaremill.com/deep-learning-for-nlp/
Neural Models
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
- intro: NIPS 2014 deep learning workshop
 - arxiv: http://arxiv.org/abs/1411.2539
 - github: https://github.com/ryankiros/visual-semantic-embedding
 - results: http://www.cs.toronto.edu/~rkiros/lstm_scnlm.html
 - demo: http://deeplearning.cs.toronto.edu/i2t
 
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
- arxiv: http://arxiv.org/abs/1503.00075
 - github: https://github.com/stanfordnlp/treelstm
 - github(Theano): https://github.com/ofirnachum/tree_rnn
 
Visualizing and Understanding Neural Models in NLP
- arxiv: http://arxiv.org/abs/1506.01066
 - github: https://github.com/jiweil/Visualizing-and-Understanding-Neural-Models-in-NLP
 
Character-Aware Neural Language Models
Skip-Thought Vectors
A Primer on Neural Network Models for Natural Language Processing
Character-aware Neural Language Models
Neural Variational Inference for Text Processing
- arxiv: http://arxiv.org/abs/1511.06038
 - notes: http://dustintran.com/blog/neural-variational-inference-for-text-processing/
 - github: https://github.com/carpedm20/variational-text-tensorflow
 - github: https://github.com/cheng6076/NVDM
 
Sequence to Sequence Learning
Generating Text with Deep Reinforcement Learning
- intro: NIPS 2015
 - arxiv: http://arxiv.org/abs/1510.09202
 
MUSIO: A Deep Learning based Chatbot Getting Smarter
- homepage: http://ec2-204-236-149-143.us-west-1.compute.amazonaws.com:9000/
 - github(Torch7): https://github.com/deepcoord/seq2seq
 
Translation
Learning phrase representations using rnn encoder-decoder for statistical machine translation
- intro: GRU. EMNLP 2014
 - arxiv: http://arxiv.org/abs/1406.1078
 
Neural Machine Translation by Jointly Learning to Align and Translate
- intro: ICLR 2015
 - arxiv: http://arxiv.org/abs/1409.0473
 - github: https://github.com/lisa-groundhog/GroundHog
 
Multi-Source Neural Translation
- intro: “report up to +4.8 Bleu increases on top of a very strong attention-based neural translation model.”
 - arxiv: Multi-Source Neural Translation
 - github(Zoph_RNN): https://github.com/isi-nlp/Zoph_RNN
 - video: http://research.microsoft.com/apps/video/default.aspx?id=260336
 
Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism
- arxiv: http://arxiv.org/abs/1601.01073
 - github: https://github.com/nyu-dl/dl4mt-multi
 - notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/multi-way-nmt-shared-attention.md
 
Modeling Coverage for Neural Machine Translation
A Character-level Decoder without Explicit Segmentation for Neural Machine Translation
NEMATUS: Attention-based encoder-decoder model for neural machine translation
Variational Neural Machine Translation
- intro: EMNLP 2016
 - arxiv: https://arxiv.org/abs/1605.07869
 - github: https://github.com/DeepLearnXMU/VNMT
 
Neural Network Translation Models for Grammatical Error Correction
Linguistic Input Features Improve Neural Machine Translation
Sequence-Level Knowledge Distillation
- intro: EMNLP 2016
 - arxiv: http://arxiv.org/abs/1606.07947
 - github: https://github.com/harvardnlp/nmt-android
 
Neural Machine Translation: Breaking the Performance Plateau
Tips on Building Neural Machine Translation Systems
Semi-Supervised Learning for Neural Machine Translation
- intro: ACL 2016. Tsinghua University & Baidu Inc
 - arxiv: http://arxiv.org/abs/1606.04596
 
EUREKA-MangoNMT: A C++ toolkit for neural machine translation for CPU
Deep Character-Level Neural Machine Translation

Neural Machine Translation Implementations
Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Learning to Translate in Real-time with Neural Machine Translation
Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions
Fully Character-Level Neural Machine Translation without Explicit Segmentation
Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation
Neural Machine Translation in Linear Time
- intro: ByteNet
 - arxiv: https://arxiv.org/abs/1610.10099
 - github: https://github.com/paarthneekhara/byteNet-tensorflow
 - github(Tensorflow): https://github.com/buriburisuri/ByteNet
 
Neural Machine Translation with Reconstruction
A Convolutional Encoder Model for Neural Machine Translation
- intro: ACL 2017. Facebook AI Research
 - arxiv: https://arxiv.org/abs/1611.02344
 - github: https://github.com//pravarmahajan/cnn-encoder-nmt
 
Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder
MXNMT: MXNet based Neural Machine Translation
Doubly-Attentive Decoder for Multi-modal Neural Machine Translation
- intro: Dublin City University & Trinity College Dublin
 - arxiv: https://arxiv.org/abs/1702.01287
 
Massive Exploration of Neural Machine Translation Architectures
- intro: Google Brain
 - arxiv: https://arxiv.org/abs/1703.03906
 - github: https://github.com/google/seq2seq/
 
Depthwise Separable Convolutions for Neural Machine Translation
- intro: Google Brain & University of Toronto
 - arxiv: https://arxiv.org/abs/1706.03059
 
Deep Architectures for Neural Machine Translation
- intro: WMT 2017 research track. University of Edinburgh & Charles University
 - arxiv: https://arxiv.org/abs/1707.07631
 - github: https://github.com/Avmb/deep-nmt-architectures
 
Marian: Fast Neural Machine Translation in C++
- intro: Microsoft & Adam Mickiewicz University in Poznan & University of Edinburgh
 - homepage: https://marian-nmt.github.io/
 - arxiv: https://arxiv.org/abs/1804.00344
 - github: https://github.com/marian-nmt/marian
 
Sockeye
- intro: Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
 - arxiv: https://github.com/awslabs/sockeye/
 
Summarization
Extraction of Salient Sentences from Labelled Documents
- arxiv: http://arxiv.org/abs/1412.6815
 - github: https://github.com/mdenil/txtnets
 - notes: https://github.com/jxieeducation/DIY-Data-Science/blob/master/papernotes/2014/06/model-visualizing-summarising-conv-net.md
 
A Neural Attention Model for Abstractive Sentence Summarization
- intro: EMNLP 2015. Facebook AI Research
 - arxiv: http://arxiv.org/abs/1509.00685
 - github: https://github.com/facebook/NAMAS
 - github(TensorFlow): https://github.com/carpedm20/neural-summary-tensorflow
 
A Convolutional Attention Network for Extreme Summarization of Source Code
- homepage: http://groups.inf.ed.ac.uk/cup/codeattention/
 - arxiv: http://arxiv.org/abs/1602.03001
 - github: https://github.com/jxieeducation/DIY-Data-Science/blob/master/papernotes/2016/02/conv-attention-network-source-code-summarization.md
 
Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond
- intro: BM Watson & Université de Montréal
 - arxiv: http://arxiv.org/abs/1602.06023
 
textsum: Text summarization with TensorFlow
- blog: https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html
 - github: https://github.com/tensorflow/models/tree/master/textsum
 
How to Run Text Summarization with TensorFlow
- blog: https://medium.com/@surmenok/how-to-run-text-summarization-with-tensorflow-d4472587602d#.mll1rqgjg
 - github: https://github.com/surmenok/TextSum
 
Reading Comprehension
Text Comprehension with the Attention Sum Reader Network
Text Understanding with the Attention Sum Reader Network
- intro: ACL 2016
 - arxiv: https://arxiv.org/abs/1603.01547
 - github: https://github.com/rkadlec/asreader
 
A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task
Consensus Attention-based Neural Networks for Chinese Reading Comprehension
- arxiv: http://arxiv.org/abs/1607.02250
 - dataset(“HFL-RC”): http://hfl.iflytek.com/chinese-rc/
 
Separating Answers from Queries for Neural Reading Comprehension
Attention-over-Attention Neural Networks for Reading Comprehension
Teaching Machines to Read and Comprehend CNN News and Children Books using Torch
Reasoning with Memory Augmented Neural Networks for Language Comprehension
Bidirectional Attention Flow: Bidirectional Attention Flow for Machine Comprehension
- project page: https://allenai.github.io/bi-att-flow/
 - github: https://github.com/allenai/bi-att-flow
 
NewsQA: A Machine Comprehension Dataset
- arxiv: https://arxiv.org/abs/1611.09830
 - dataset: http://datasets.maluuba.com/NewsQA
 - github: https://github.com/Maluuba/newsqa
 
Gated-Attention Readers for Text Comprehension
- intro: CMU
 - arxiv: https://arxiv.org/abs/1606.01549
 - github: https://github.com/bdhingra/ga-reader
 
Get To The Point: Summarization with Pointer-Generator Networks
- intro: ACL 2017. Stanford University & Google Brain
 - arxiv: https://arxiv.org/abs/1704.04368
 - github: https://github.com/abisee/pointer-generator
 
Language Understanding
Recurrent Neural Networks with External Memory for Language Understanding
- arxiv: http://arxiv.org/abs/1506.00195
 - github: https://github.com/npow/RNN-EM
 
Neural Semantic Encoders
- intro: EACL 2017
 - arxiv: https://arxiv.org/abs/1607.04315
 - github(Keras): https://github.com/pdasigi/neural-semantic-encoders
 
Neural Tree Indexers for Text Understanding
- arxiv: https://arxiv.org/abs/1607.04492
 - bitbucket: https://bitbucket.org/tsendeemts/nti/src
 
Better Text Understanding Through Image-To-Text Transfer
- intro: Google Brain & Technische Universität München
 - arxiv: https://arxiv.org/abs/1705.08386
 
Text Classification
Convolutional Neural Networks for Sentence Classification
- intro: EMNLP 2014
 - arxiv: http://arxiv.org/abs/1408.5882
 - github(Theano): https://github.com/yoonkim/CNN_sentence
 - github(Torch): https://github.com/harvardnlp/sent-conv-torch
 - github(Keras): https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras
 - github(Tensorflow): https://github.com/abhaikollara/CNN-Sentence-Classification
 
Recurrent Convolutional Neural Networks for Text Classification
- paper: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745/9552
 - github: https://github.com/knok/rcnn-text-classification
 
Character-level Convolutional Networks for Text Classification
- intro: NIPS 2015. “Text Understanding from Scratch”
 - arxiv: http://arxiv.org/abs/1509.01626
 - github: https://github.com/zhangxiangxiao/Crepe
 - datasets: http://goo.gl/JyCnZq
 - github(TensorFlow): https://github.com/mhjabreel/CharCNN
 
A C-LSTM Neural Network for Text Classification
Rationale-Augmented Convolutional Neural Networks for Text Classification
Text classification using DIGITS and Torch7
Recurrent Neural Network for Text Classification with Multi-Task Learning
Deep Multi-Task Learning with Shared Memory
- intro: EMNLP 2016
 - arxiv: https://arxiv.org/abs/1609.07222
 
Virtual Adversarial Training for Semi-Supervised Text Classification
Adversarial Training Methods for Semi-Supervised Text Classification
- arxiv: http://arxiv.org/abs/1605.07725
 - notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/adversarial-text-classification.md
 
Sentence Convolution Code in Torch: Text classification using a convolutional neural network
Bag of Tricks for Efficient Text Classification
- intro: Facebook AI Research
 - arxiv: http://arxiv.org/abs/1607.01759
 - github: https://github.com/kemaswill/fasttext_torch
 - github: https://github.com/facebookresearch/fastText
 
Actionable and Political Text Classification using Word Embeddings and LSTM
Implementing a CNN for Text Classification in TensorFlow
fancy-cnn: Multiparadigm Sequential Convolutional Neural Networks for text classification
Convolutional Neural Networks for Text Categorization: Shallow Word-level vs. Deep Character-level
Tweet Classification using RNN and CNN
Hierarchical Attention Networks for Document Classification
- intro: CMU & MSR. NAACL 2016
 - paper: https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf
 - github(TensorFlow): https://github.com/raviqqe/tensorflow-font2char2word2sent2doc
 - github(TensorFlow): https://github.com/ematvey/deep-text-classifier
 
AC-BLSTM: Asymmetric Convolutional Bidirectional LSTM Networks for Text Classification
- arxiv: https://arxiv.org/abs/1611.01884
 - github(MXNet): https://github.com/Ldpe2G/AC-BLSTM
 
Generative and Discriminative Text Classification with Recurrent Neural Networks
- intro: DeepMind
 - arxiv: https://arxiv.org/abs/1703.01898
 
Adversarial Multi-task Learning for Text Classification
- intro: ACL 2017
 - arxiv: https://arxiv.org/abs/1704.05742
 - data: http://nlp.fudan.edu.cn/data/
 
Deep Text Classification Can be Fooled
- intro: Renmin University of China
 - arxiv: https://arxiv.org/abs/1704.08006
 
Deep neural network framework for multi-label text classification
Multi-Task Label Embedding for Text Classification
- intro: Shanghai Jiao Tong University
 - arxiv: https://arxiv.org/abs/1710.07210
 
Text Clustering
Self-Taught Convolutional Neural Networks for Short Text Clustering
- intro: Chinese Academy of Sciences. accepted for publication in Neural Networks
 - arxiv: https://arxiv.org/abs/1701.00185
 - github: https://github.com/jacoxu/STC2
 
Alignment
Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books
Dialog
Visual Dialog
- webiste: http://visualdialog.org/
 - arxiv: https://arxiv.org/abs/1611.08669
 - github: https://github.com/batra-mlp-lab/visdial-amt-chat
 - github(Torch): https://github.com/batra-mlp-lab/visdial
 - github(PyTorch): https://github.com/Cloud-CV/visual-chatbot
 - demo: http://visualchatbot.cloudcv.org/
 
Papers, code and data from FAIR for various memory-augmented nets with application to text understanding and dialogue.
Neural Emoji Recommendation in Dialogue Systems
- intro: Tsinghua University & Baidu
 - arxiv: https://arxiv.org/abs/1612.04609
 
Memory Networks
Neural Turing Machines
- paper: http://arxiv.org/abs/1410.5401
 - Chs: http://www.jianshu.com/p/94dabe29a43b
 - github: https://github.com/shawntan/neural-turing-machines
 - github: https://github.com/DoctorTeeth/diffmem
 - github: https://github.com/carpedm20/NTM-tensorflow
 - blog: https://blog.aidangomez.ca/2016/05/16/The-Neural-Turing-Machine/
 
Memory Networks
- intro: Facebook AI Research
 - arxiv: http://arxiv.org/abs/1410.3916
 - github: https://github.com/npow/MemNN
 
End-To-End Memory Networks
- intro: Facebook AI Research
 - intro: Continuous version of memory extraction via softmax. “Weakly supervised memory networks”
 - arxiv: http://arxiv.org/abs/1503.08895
 - github: https://github.com/facebook/MemNN
 - github: https://github.com/vinhkhuc/MemN2N-babi-python
 - github: https://github.com/npow/MemN2N
 - github: https://github.com/domluna/memn2n
 - github(Tensorflow): https://github.com/abhaikollara/MemN2N-Tensorflow
 - video: http://research.microsoft.com/apps/video/default.aspx?id=259920&r=1
 - video: http://pan.baidu.com/s/1pKiGLzP
 
Reinforcement Learning Neural Turing Machines - Revised
Learning to Transduce with Unbounded Memory
- intro: Google DeepMind
 - arxiv: http://arxiv.org/abs/1506.02516
 
How to Code and Understand DeepMind’s Neural Stack Machine
- blog: https://iamtrask.github.io/2016/02/25/deepminds-neural-stack-machine/
 - video tutorial: http://pan.baidu.com/s/1qX0EGDe
 
Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
- intro: Memory networks implemented via rnns and gated recurrent units (GRUs).
 - arxiv: http://arxiv.org/abs/1506.07285
 - blog(“Implementing Dynamic memory networks”): http://yerevann.github.io//2016/02/05/implementing-dynamic-memory-networks/
 - github(Python): https://github.com/swstarlab/DynamicMemoryNetworks
 
Ask Me Even More: Dynamic Memory Tensor Networks (Extended Model)
- intro: extensions for the Dynamic Memory Network (DMN)
 - arxiv: https://arxiv.org/abs/1703.03939
 - github: https://github.com/rgsachin/DMTN
 
Structured Memory for Neural Turing Machines
- intro: IBM Watson
 - arxiv: http://arxiv.org/abs/1510.03931
 
Dynamic Memory Networks for Visual and Textual Question Answering
- intro: MetaMind 2016
 - arxiv: http://arxiv.org/abs/1603.01417
 - slides: http://slides.com/smerity/dmn-for-tqa-and-vqa-nvidia-gtc#/
 - github: https://github.com/therne/dmn-tensorflow
 - github(Theano): https://github.com/ethancaballero/Improved-Dynamic-Memory-Networks-DMN-plus
 - review: https://www.technologyreview.com/s/600958/the-memory-trick-making-computers-seem-smarter/
 - github(Tensorflow): https://github.com/DeepRNN/visual_question_answering
 
Neural GPUs Learn Algorithms
- arxiv: http://arxiv.org/abs/1511.08228
 - github: https://github.com/tensorflow/models/tree/master/neural_gpu
 - github: https://github.com/ikostrikov/torch-neural-gpu
 - github: https://github.com/tristandeleu/neural-gpu
 
Hierarchical Memory Networks
Convolutional Residual Memory Networks
NTM-Lasagne: A Library for Neural Turing Machines in Lasagne
- github: https://github.com/snipsco/ntm-lasagne
 - blog: https://medium.com/snips-ai/ntm-lasagne-a-library-for-neural-turing-machines-in-lasagne-2cdce6837315#.96pnh1m6j
 
Evolving Neural Turing Machines for Reward-based Learning
- homepage: http://sebastianrisi.com/entm/
 - paper: http://sebastianrisi.com/wp-content/uploads/greve_gecco16.pdf
 - code: https://www.dropbox.com/s/t019mwabw5nsnxf/neuralturingmachines-master.zip?dl=0
 
Hierarchical Memory Networks for Answer Selection on Unknown Words
- intro: COLING 2016
 - arxiv: https://arxiv.org/abs/1609.08843
 - github: https://github.com/jacoxu/HMN4QA
 
Gated End-to-End Memory Networks
Can Active Memory Replace Attention?
- intro: Google Brain
 - arxiv: https://arxiv.org/abs/1610.08613
 
A Taxonomy for Neural Memory Networks
- intro: University of Florida
 - arxiv: https://arxiv.org/abs/1805.00327
 
Papers
Globally Normalized Transition-Based Neural Networks

- intro: speech tagging, dependency parsing and sentence compression
 - arxiv: http://arxiv.org/abs/1603.06042
 - github(SyntaxNet): https://github.com/tensorflow/models/tree/master/syntaxnet
 
A Decomposable Attention Model for Natural Language Inference
- intro: EMNLP 2016
 - arxiv: http://arxiv.org/abs/1606.01933
 - github(Keras+spaCy): https://github.com/explosion/spaCy/tree/master/examples/keras_parikh_entailment
 
Improving Recurrent Neural Networks For Sequence Labelling
Recurrent Memory Networks for Language Modeling
- arixv: http://arxiv.org/abs/1601.01272
 - github: https://github.com/ketranm/RMN
 
Tweet2Vec: Learning Tweet Embeddings Using Character-level CNN-LSTM Encoder-Decoder
- intro: MIT Media Lab
 - arixv: http://arxiv.org/abs/1607.07514
 
Learning text representation using recurrent convolutional neural network with highway layers
- intro: Neu-IR ‘16 SIGIR Workshop on Neural Information Retrieval
 - arxiv: http://arxiv.org/abs/1606.06905
 - github: https://github.com/wenying45/deep_learning_tutorial/tree/master/rcnn-hw
 
Ask the GRU: Multi-task Learning for Deep Text Recommendations
From phonemes to images: levels of representation in a recurrent neural model of visually-grounded language learning
- intro: COLING 2016
 - arxiv: https://arxiv.org/abs/1610.03342
 
Visualizing Linguistic Shift
A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks
- intro: The University of Tokyo & Salesforce Research
 - arxiv: https://arxiv.org/abs/1611.01587
 
Deep Learning applied to NLP
https://arxiv.org/abs/1703.03091
Attention Is All You Need
- intro: Google Brain & Google Research & University of Toronto
 - intro: Just attention + positional encoding = state of the art
 - arxiv: https://arxiv.org/abs/1706.03762
 - github(Chainer): https://github.com/soskek/attention_is_all_you_need
 
Recent Trends in Deep Learning Based Natural Language Processing
- intro: Beijing Institute of Technology & National University of Singapore & Nanyang Technological University
 - arxiv: https://arxiv.org/abs/1708.02709
 
HotFlip: White-Box Adversarial Examples for NLP
- intro: University of Oregon & Nanjing University
 - arxiv: https://arxiv.org/abs/1712.06751
 
No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling
- intro: ACL 2018
 - arxiv: https://arxiv.org/abs/1804.09160
 
Interesting Applications
Data-driven HR - Résumé Analysis Based on Natural Language Processing and Machine Learning
sk_p: a neural program corrector for MOOCs
- intro: MIT
 - intro: Using seq2seq to fix buggy code submissions in MOOCs
 - arxiv: http://arxiv.org/abs/1607.02902
 
Neural Generation of Regular Expressions from Natural Language with Minimal Domain Knowledge
- intro: EMNLP 2016
 - intro: translating natural language queries into regular expressions which embody their meaning
 - arxiv: http://arxiv.org/abs/1608.03000
 
emoji2vec: Learning Emoji Representations from their Description
- intro: EMNLP 2016
 - arxiv: http://arxiv.org/abs/1609.08359
 
Inside-Outside and Forward-Backward Algorithms Are Just Backprop (Tutorial Paper)
Cruciform: Solving Crosswords with Natural Language Processing
Smart Reply: Automated Response Suggestion for Email
- intro: Google. KDD 2016
 - arxiv: https://arxiv.org/abs/1606.04870
 - notes: https://blog.acolyer.org/2016/11/24/smart-reply-automated-response-suggestion-for-email/
 
Deep Learning for RegEx
- intro: a winning submission of Extraction of product attribute values competition (CrowdAnalytix)
 - blog: http://dlacombejr.github.io/2016/11/13/deep-learning-for-regex.html
 
Learning Python Code Suggestion with a Sparse Pointer Network
- intro: Learning to Auto-Complete using RNN Language Models
 - intro: University College London
 - arxiv: https://arxiv.org/abs/1611.08307
 - github: https://github.com/uclmr/pycodesuggest
 
End-to-End Prediction of Buffer Overruns from Raw Source Code via Neural Memory Networks
https://arxiv.org/abs/1703.02458
Convolutional Sequence to Sequence Learning
- arxiv: https://arxiv.org/abs/1705.03122
 - paper: https://s3.amazonaws.com/fairseq/papers/convolutional-sequence-to-sequence-learning.pdf
 - github: https://github.com/facebookresearch/fairseq
 
DeepFix: Fixing Common C Language Errors by Deep Learning
- intro: AAAI 2017. Indian Institute of Science
 - project page: http://www.iisc-seal.net/deepfix
 - paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603/13921
 - bitbucket: https://bitbucket.org/iiscseal/deepfix
 
Hierarchically-Attentive RNN for Album Summarization and Storytelling
- intro: EMNLP 2017. UNC Chapel Hill
 - arxiv: https://arxiv.org/abs/1708.02977
 
Project
TheanoLM - An Extensible Toolkit for Neural Network Language Modeling
NLP-Caffe: natural language processing with Caffe
DL4NLP: Deep Learning for Natural Language Processing
- github: https://github.com/nokuno/dl4nlp
 
Combining CNN and RNN for spoken language identification
- blog: http://yerevann.github.io//2016/06/26/combining-cnn-and-rnn-for-spoken-language-identification/
 - github: https://github.com/YerevaNN/Spoken-language-identification/tree/master/theano
 
Character-Aware Neural Language Models: LSTM language model with CNN over characters in TensorFlow
Neural Relation Extraction with Selective Attention over Instances
- paper: http://nlp.csai.tsinghua.edu.cn/~lzy/publications/acl2016_nre.pdf
 - github: https://github.com/thunlp/NRE
 
deep-simplification: Text simplification using RNNs
- intro: achieves a BLEU score of 61.14
 - github: https://github.com/mbartoli/deep-simplification
 
lamtram: A toolkit for language and translation modeling using neural networks
Lango: Language Lego
- intro: Lango is a natural language processing library for working with the building blocks of language.
 - github: https://github.com/ayoungprogrammer/Lango
 
Sequence-to-Sequence Learning with Attentional Neural Networks
- github(Torch): https://github.com/harvardnlp/seq2seq-attn
 
harvardnlp code
- intro: pen-source implementations of popular deep learning techniques with applications to NLP
 - homepage: http://nlp.seas.harvard.edu/code/
 
Seq2seq: Sequence to Sequence Learning with Keras
debug seq2seq
Recurrent & convolutional neural network modules
- intro: This repo contains Theano implementations of popular neural network components and optimization methods.
 - github: https://github.com/taolei87/rcnn
 
Datasets
Datasets for Natural Language Processing
Blogs
How to read: Character level deep learning

Heavy Metal and Natural Language Processing
- part 1: http://www.degeneratestate.org/posts/2016/Apr/20/heavy-metal-and-natural-language-processing-part-1/
 
Sequence To Sequence Attention Models In PyCNN
https://talbaumel.github.io/Neural+Attention+Mechanism.html
Source Code Classification Using Deep Learning

http://blog.aylien.com/source-code-classification-using-deep-learning/
My Process for Learning Natural Language Processing with Deep Learning
Convolutional Methods for Text
https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f
Word2Vec
Word2Vec Tutorial - The Skip-Gram Model
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
Word2Vec Tutorial Part 2 - Negative Sampling
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/
Word2Vec Resources
http://mccormickml.com/2016/04/27/word2vec-resources/
Demos
AskImage.org - Deep Learning for Answering Questions about Images
- homepage: http://www.askimage.org/
 
Talks / Videos
Navigating Natural Language Using Reinforcement Learning
Resources
So, you need to understand language data? Open-source NLP software can help!

- blog: http://entopix.com/so-you-need-to-understand-language-data-open-source-nlp-software-can-help.html
 
Curated list of resources on building bots

Notes for deep learning on NLP
https://medium.com/@frank_chung/notes-for-deep-learning-on-nlp-94ddfcb45723#.iouo0v7m7
Graph Convolutional Networks
Learning Convolutional Neural Networks for Graphs
- intro: ICML 2016
 - arxiv: http://arxiv.org/abs/1605.05273
 
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
- arxiv: https://arxiv.org/abs/1606.09375
 - github: https://github.com/mdeff/cnn_graph
 - github: https://github.com/pfnet-research/chainer-graph-cnn
 
Semi-Supervised Classification with Graph Convolutional Networks
- arxiv: http://arxiv.org/abs/1609.02907
 - github: https://github.com/tkipf/gcn
 - blog: http://tkipf.github.io/graph-convolutional-networks/
 
Graph Based Convolutional Neural Network
- intro: BMVC 2016
 - arxiv: http://arxiv.org/abs/1609.08965
 
How powerful are Graph Convolutions? (review of Kipf & Welling, 2016)
http://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/
Graph Convolutional Networks

DeepGraph: Graph Structure Predicts Network Growth
Deep Learning with Sets and Point Clouds
- intro: CMU
 - arxiv: https://arxiv.org/abs/1611.04500
 
Deep Learning on Graphs
Robust Spatial Filtering with Graph Convolutional Neural Networks
https://arxiv.org/abs/1703.00792
Modeling Relational Data with Graph Convolutional Networks
https://arxiv.org/abs/1703.06103
Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks
- intro: Imperial College London
 - arxiv: https://arxiv.org/abs/1703.02161
 
Deep Learning on Graphs with Graph Convolutional Networks
Deep Learning on Graphs with Keras
- intro:; Keras implementation of Graph Convolutional Networks
 - github: https://github.com/tkipf/keras-gcn
 
Learning Graph While Training: An Evolving Graph Convolutional Neural Network
https://arxiv.org/abs/1708.04675
Graph Attention Networks
- intro: ICLR 2018
 - intro: University of Cambridge & Centre de Visio per Computador, UAB & Montreal Institute for Learning Algorithms
 - project page: http://petar-v.com/GAT/
 - arxiv: https://arxiv.org/abs/1710.10903
 - github: https://github.com/PetarV-/GAT
 
Residual Gated Graph ConvNets
https://arxiv.org/abs/1711.07553
Probabilistic and Regularized Graph Convolutional Networks
- intro: CMU
 - arxiv: https://arxiv.org/abs/1803.04489
 
Videos as Space-Time Region Graphs
https://arxiv.org/abs/1806.01810
Relational inductive biases, deep learning, and graph networks
- intro: DeepMind & Google Brain & MIT & University of Edinburgh
 - arxiv: https://arxiv.org/abs/1806.01261
 
Can GCNs Go as Deep as CNNs?
- project: https://sites.google.com/view/deep-gcns
 - arxiv: https://arxiv.org/abs/1904.03751
 - slides: https://docs.google.com/presentation/d/1L82wWymMnHyYJk3xUKvteEWD5fX0jVRbCbI65Cxxku0/edit#slide=id.p
 - github(official, TensorFlow): https://github.com/lightaime/deep_gcns
 
GMNN: Graph Markov Neural Networks
- intro: ICML 2019
 - ariv: https://arxiv.org/abs/1905.06214
 - github: https://github.com/DeepGraphLearning/GMNN
 
DeepGCNs: Making GCNs Go as Deep as CNNs
- intro: ICCV 2019 Oral
 - arxiv: https://arxiv.org/abs/1910.06849
 - github: https://github.com/lightaime/deep_gcns_torch
 - github: https://github.com/lightaime/deep_gcns
 
Rethinking pooling in graph neural networks
- intro: NeurIPS 2020
 - arxiv: https://arxiv.org/abs/2010.11418
 
Generative Adversarial Networks
Generative Adversarial Networks
Generative Adversarial Nets
- arxiv: http://arxiv.org/abs/1406.2661
 - paper: https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
 - github: https://github.com/goodfeli/adversarial
 - github: https://github.com/aleju/cat-generator
 
Adversarial Feature Learning
- intro: ICLR 2017
 - arxiv: https://arxiv.org/abs/1605.09782
 - github: https://github.com/jeffdonahue/bigan
 
Generative Adversarial Networks
- intro: by Ian Goodfellow, NIPS 2016 tutorial
 - arxiv: https://arxiv.org/abs/1701.00160
 - slides: http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf
 - mirror: https://pan.baidu.com/s/1gfBNYW7
 
Adversarial Examples and Adversarial Training
- intro: NIPS 2016, Ian Goodfellow OpenAI
 - slides: http://www.iangoodfellow.com/slides/2016-12-9-AT.pdf
 
How to Train a GAN? Tips and tricks to make GANs work
Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- intro: CatGAN
 - arxiv: http://arxiv.org/abs/1511.06390
 
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- intro: DCGAN
 - arxiv: http://arxiv.org/abs/1511.06434
 - github: https://github.com/jazzsaxmafia/dcgan_tensorflow
 - github: https://github.com/Newmu/dcgan_code
 - github: https://github.com/mattya/chainer-DCGAN
 - github: https://github.com/soumith/dcgan.torch
 - github: https://github.com/carpedm20/DCGAN-tensorflow
 
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- arxiv: https://arxiv.org/abs/1606.03657
 - github: https://github.com/openai/InfoGAN
 - github(Tensorflow): https://github.com/buriburisuri/supervised_infogan
 
Learning Interpretable Latent Representations with InfoGAN: A tutorial on implementing InfoGAN in Tensorflow
- blog: https://medium.com/@awjuliani/learning-interpretable-latent-representations-with-infogan-dd710852db46#.r0kur3aum
 - github: https://gist.github.com/awjuliani/c9ecd8b37d33d6855cd4ed9aa16ce89f#file-infogan-tutorial-ipynb
 
Coupled Generative Adversarial Networks
Energy-based Generative Adversarial Network
- intro: EBGAN
 - author: Junbo Zhao, Michael Mathieu, Yann LeCun
 - arxiv: http://arxiv.org/abs/1609.03126
 - github(Tensorflow): https://github.com/buriburisuri/ebgan
 
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
Connecting Generative Adversarial Networks and Actor-Critic Methods
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Unrolled Generative Adversarial Networks
Generative Adversarial Networks as Variational Training of Energy Based Models
Multi-class Generative Adversarial Networks with the L2 Loss Function
Least Squares Generative Adversarial Networks
Inverting The Generator Of A Generative Adversarial Networ
- intro: NIPS 2016 Workshop on Adversarial Training
 - arxiv: https://arxiv.org/abs/1611.05644
 
ml4a-invisible-cities
- project page: https://opendot.github.io/ml4a-invisible-cities/
 - arxiv: https://github.com/opendot/ml4a-invisible-cities
 
Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
Associative Adversarial Networks
- intro: NIPS 2016 Workshop on Adversarial Training
 - arxiv: https://arxiv.org/abs/1611.06953
 
Temporal Generative Adversarial Nets
Handwriting Profiling using Generative Adversarial Networks
- intro: Accepted at The Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17 Student Abstract and Poster Program)
 - arxiv: https://arxiv.org/abs/1611.08789
 
C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- intro: Constructive Machine Learning Workshop (CML) at NIPS 2016
 - project page: http://mogren.one/publications/2016/c-rnn-gan/
 - arxiv: https://arxiv.org/abs/1611.09904
 - github: https://github.com/olofmogren/c-rnn-gan
 
Ensembles of Generative Adversarial Networks
- intro: NIPS 2016 Workshop on Adversarial Training
 - arxiv: https://arxiv.org/abs/1612.00991
 
Improved generator objectives for GANs
- intro: NIPS 2016 Workshop on Adversarial Training
 - arxiv: https://arxiv.org/abs/1612.02780
 
Stacked Generative Adversarial Networks
- intro: SGAN
 - arxiv: https://arxiv.org/abs/1612.04357
 - github: https://github.com/xunhuang1995/SGAN
 
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks
- intro: Google Brain & Google Research
 - arxiv: https://arxiv.org/abs/1612.05424
 
AdaGAN: Boosting Generative Models
- intro: Max Planck Institute for Intelligent Systems & Google Brain
 - arxiv: https://arxiv.org/abs/1701.02386
 
Towards Principled Methods for Training Generative Adversarial Networks
- intro: Courant Institute of Mathematical Sciences & Facebook AI Research
 - arxiv: https://arxiv.org/abs/1701.04862
 
Wasserstein GAN
- intro: Courant Institute of Mathematical Sciences & Facebook AI Research
 - arxiv: https://arxiv.org/abs/1701.07875
 - github: https://github.com/martinarjovsky/WassersteinGAN
 - github: https://github.com/Zardinality/WGAN-tensorflow
 - github(Tensorflow/Keras): https://github.com/kuleshov/tf-wgan
 - github: https://github.com/shekkizh/WassersteinGAN.tensorflow
 - gist: https://gist.github.com/soumith/71995cecc5b99cda38106ad64503cee3
 - reddit: https://www.reddit.com/r/MachineLearning/comments/5qxoaz/r_170107875_wasserstein_gan/
 
Improved Training of Wasserstein GANs
- intro: NIPS 2017
 - arxiv: https://arxiv.org/abs/1704.00028
 - github(TensorFlow): https://github.com/igul222/improved_wgan_training
 - github: https://github.com/jalola/improved-wgan-pytorch
 
On the effect of Batch Normalization and Weight Normalization in Generative Adversarial Networks
On the Effects of Batch and Weight Normalization in Generative Adversarial Networks
Controllable Generative Adversarial Network
- intro: Korea University
 - arxiv: https://arxiv.org/abs/1708.00598
 
Generative Adversarial Networks: An Overview
- intro: Imperial College London & Victoria University of Wellington & University of Montreal & Cortexica Vision Systems Ltd
 - intro: IEEE Signal Processing Magazine Special Issue on Deep Learning for Visual Understanding
 - arxiv: https://arxiv.org/abs/1710.07035
 
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
https://arxiv.org/abs/1711.03213
Spectral Normalization for Generative Adversarial Networks
https://openreview.net/forum?id=B1QRgziT-
Are GANs Created Equal? A Large-Scale Study
- intro: Google Brain
 - arxiv: https://arxiv.org/abs/1711.10337
 - reddit: https://www.reddit.com/r/MachineLearning/comments/7gwip3/d_googles_large_scale_gantuning_paper_unfairly/
 
GAGAN: Geometry-Aware Generative Adverserial Networks
https://arxiv.org/abs/1712.00684
CycleGAN: a Master of Steganography
- intro: NIPS 2017, workshop on Machine Deception
 - arxiv: https://arxiv.org/abs/1712.02950
 
PacGAN: The power of two samples in generative adversarial networks
- intro: CMU & University of Illinois at Urbana-Champaign
 - arxiv: https://arxiv.org/abs/1712.04086
 
ComboGAN: Unrestrained Scalability for Image Domain Translation
Decoupled Learning for Conditional Adversarial Networks
https://arxiv.org/abs/1801.06790
No Modes left behind: Capturing the data distribution effectively using GANs
- intro: AAAI 2018
 - arxiv: https://arxiv.org/abs/1802.00771
 
Improving GAN Training via Binarized Representation Entropy (BRE) Regularization
- intro: ICLR 2018
 - arxiv: https://arxiv.org/abs/1805.03644
 - github: https://github.com/BorealisAI/bre-gan
 
On GANs and GMMs
https://arxiv.org/abs/1805.12462
The Unusual Effectiveness of Averaging in GAN Training
https://arxiv.org/abs/1806.04498
Understanding the Effectiveness of Lipschitz Constraint in Training of GANs via Gradient Analysis
https://arxiv.org/abs/1807.00751
The GAN Landscape: Losses, Architectures, Regularization, and Normalization
- intro: Google Brain
 - arxiv: https://arxiv.org/abs/1807.04720
 - github: https://github.com/google/compare_gan
 
Which Training Methods for GANs do actually Converge?
- intro: ICML 2018. MPI Tübingen & Microsoft Research
 - project page: https://avg.is.tuebingen.mpg.de/publications/meschedericml2018
 - paper: https://avg.is.tuebingen.mpg.de/uploads_file/attachment/attachment/424/Mescheder2018ICML.pdf
 - github: https://github.com/LMescheder/GAN_stability
 
Convergence Problems with Generative Adversarial Networks (GANs)
- intro: University of Oxford
 - arxiv: https://arxiv.org/abs/1806.11382
 
Bayesian CycleGAN via Marginalizing Latent Sampling
https://arxiv.org/abs/1811.07465
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
https://arxiv.org/abs/1811.10597
Do GAN Loss Functions Really Matter?
https://arxiv.org/abs/1811.09567
Image-to-Image Translation
Pix2Pix
Image-to-Image Translation with Conditional Adversarial Networks

- intro: CVPR 2017
 - project page: https://phillipi.github.io/pix2pix/
 - arxiv: https://arxiv.org/abs/1611.07004
 - github: https://github.com/phillipi/pix2pix
 - github(TensorFlow): https://github.com/yenchenlin/pix2pix-tensorflow
 - github(Chainer): https://github.com/mattya/chainer-pix2pix
 - github(PyTorch): https://github.com/mrzhu-cool/pix2pix-pytorch
 - github(Chainer): https://github.com/wuhuikai/chainer-pix2pix
 
Remastering Classic Films in Tensorflow with Pix2Pix
- blog: https://hackernoon.com/remastering-classic-films-in-tensorflow-with-pix2pix-f4d551fa0503#.6dmahnt8n
 - github: https://github.com/awjuliani/Pix2Pix-Film
 - model: https://drive.google.com/file/d/0B8x0IeJAaBccNFVQMkQ0QW15TjQ/view
 
Image-to-Image Translation in Tensorflow
- blog: http://affinelayer.com/pix2pix/index.html
 - github: https://github.com/affinelayer/pix2pix-tensorflow
 
webcam pix2pix
https://github.com/memo/webcam-pix2pix-tensorflow
Unsupervised Image-to-Image Translation with Generative Adversarial Networks
- intro: Imperial College London & Indian Institute of Technology
 - arxiv: https://arxiv.org/abs/1701.02676
 
Unsupervised Image-to-Image Translation Networks
- intro: NIPS 2017 Spotlight
 - intro: unsupervised/unpaired image-to-image translation using coupled GANs
 - project page: http://research.nvidia.com/publication/2017-12_Unsupervised-Image-to-Image-Translation
 - arxiv: https://arxiv.org/abs/1703.00848
 - github: https://github.com/mingyuliutw/UNIT
 
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- intro: UC Berkeley
 - project page: https://junyanz.github.io/CycleGAN/
 - arxiv: https://arxiv.org/abs/1703.10593
 - github(official, Torch): https://github.com/junyanz/CycleGAN
 - github(official, PyTorch): https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
 - github(PyTorch): https://github.com/eveningglow/semi-supervised-CycleGAN
 - github(Chainer): https://github.com/Aixile/chainer-cyclegan
 
CycleGAN and pix2pix in PyTorch
- intro: Image-to-image translation in PyTorch (e.g. horse2zebra, edges2cats, and more)
 - github: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
 
Perceptual Adversarial Networks for Image-to-Image Transformation
https://arxiv.org/abs/1706.09138
XGAN: Unsupervised Image-to-Image Translation for many-to-many Mappings
- intro: IST Austria & Google Brain & Google Research
 - arxiv: https://arxiv.org/abs/1711.05139
 
In2I : Unsupervised Multi-Image-to-Image Translation Using Generative Adversarial Networks
https://arxiv.org/abs/1711.09334
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
- intro: Korea University & Clova AI Research
 - arxiv: https://arxiv.org/abs/1711.09020
 - github: https://github.com//yunjey/StarGAN
 
Discriminative Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation
https://arxiv.org/abs/1711.09554
Toward Multimodal Image-to-Image Translation
- intro: NIPS 2017. BicycleGAN
 - project page: https://junyanz.github.io/BicycleGAN/
 - arxiv: https://arxiv.org/abs/1711.11586
 - github(official, PyTorch): https://github.com//junyanz/BicycleGAN
 - github: https://github.com/gitlimlab/BicycleGAN-Tensorflow
 - github: https://github.com/kvmanohar22/img2imgGAN
 - github: https://github.com/eveningglow/BicycleGAN-pytorch
 
Face Translation between Images and Videos using Identity-aware CycleGAN
https://arxiv.org/abs/1712.00971
Unsupervised Multi-Domain Image Translation with Domain-Specific Encoders/Decoders
https://arxiv.org/abs/1712.02050
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
- intro: NVIDIA Corporation, UC Berkeley
 - project page: https://tcwang0509.github.io/pix2pixHD/
 - arxiv: https://arxiv.org/abs/1711.11585
 - github: https://github.com/NVIDIA/pix2pixHD
 - youtube: https://www.youtube.com/watch?v=3AIpPlzM_qs&feature=youtu.be
 
On the Effectiveness of Least Squares Generative Adversarial Networks
https://arxiv.org/abs/1712.06391
GANs for Limited Labeled Data
- intro: Ian Goodfellow
 - slides: http://www.iangoodfellow.com/slides/2017-12-09-label.pdf
 
Defending Against Adversarial Examples
- intro: Ian Goodfellow
 - slides: http://www.iangoodfellow.com/slides/2017-12-08-defending.pdf
 
Conditional Image-to-Image Translation
- intro: CVPR 2018
 - arxiv: https://arxiv.org/abs/1805.00251
 
XOGAN: One-to-Many Unsupervised Image-to-Image Translation
https://arxiv.org/abs/1805.07277
Unsupervised Attention-guided Image to Image Translation
https://arxiv.org/abs/1806.02311
Exemplar Guided Unsupervised Image-to-Image Translation
https://arxiv.org/abs/1805.11145
Improving Shape Deformation in Unsupervised Image-to-Image Translation
https://arxiv.org/abs/1808.04325
Video-to-Video Synthesis
Segmentation Guided Image-to-Image Translation with Adversarial Networks
https://arxiv.org/abs/1901.01569
Projects
Generative Adversarial Networks with Keras
Generative Adversarial Network Demo for Fresh Machine Learning #2
- youtube: https://www.youtube.com/watch?v=deyOX6Mt_As&feature=em-uploademail
 - github: https://github.com/llSourcell/Generative-Adversarial-Network-Demo
 - demo: http://cs.stanford.edu/people/karpathy/gan/
 
TextGAN: A generative adversarial network for text generation, written in TensorFlow.
cleverhans v0.1: an adversarial machine learning library
Deep Convolutional Variational Autoencoder w/ Adversarial Network
- intro: An implementation of the deep convolutional generative adversarial network, combined with a varational autoencoder
 - github: https://github.com/staturecrane/dcgan_vae_torch
 
A versatile GAN(generative adversarial network) implementation. Focused on scalability and ease-of-use.
AdaGAN: Boosting Generative Models
- intro: AdaGAN: greedy iterative procedure to train mixtures of GANs
 - intro: Max Planck Institute for Intelligent Systems & Google Brain
 - arxiv: https://arxiv.org/abs/1701.02386
 - github: https://github.com/tolstikhin/adagan
 
TensorFlow-GAN (TFGAN)
- intro: TFGAN: A Lightweight Library for Generative Adversarial Networks
 - github: https://github.com//tensorflow/tensorflow/tree/master/tensorflow/contrib/gan
 - blog: https://research.googleblog.com/2017/12/tfgan-lightweight-library-for.html
 
Blogs
Generative Adversial Networks Explained
Generative Adversarial Autoencoders in Theano
- blog: https://swarbrickjones.wordpress.com/2016/01/24/generative-adversarial-autoencoders-in-theano/
 - github: https://github.com/mikesj-public/dcgan-autoencoder
 
An introduction to Generative Adversarial Networks (with code in TensorFlow)
- blog: http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
 - github: https://github.com/AYLIEN/gan-intro
 
Difficulties training a Generative Adversarial Network
Are Energy-Based GANs any more energy-based than normal GANs?
http://www.inference.vc/are-energy-based-gans-actually-energy-based/
Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode: Plus a Tensorflow tutorial for implementing your own GAN
- blog: https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.rpiunhdjh
 - gist: https://gist.github.com/awjuliani/8ebf356d03ffee139659807be7fa2611
 
Deep Learning Research Review Week 1: Generative Adversarial Nets

Stability of Generative Adversarial Networks
Instance Noise: A trick for stabilising GAN training
Generating Fine Art in 300 Lines of Code
- intro: DCGAN
 - blog: https://medium.com/@richardherbert/generating-fine-art-in-300-lines-of-code-4d37218216a6#.63qm8ef9g
 
Talks / Videos
Generative Adversarial Network visualization
Resources
The GAN Zoo
- intro: A list of all named GANs!
 - github: https://github.com/hindupuravinash/the-gan-zoo
 
AdversarialNetsPapers: The classical Papers about adversial nets
GAN Timeline
- intro: A timeline showing the development of Generative Adversarial Networks (GAN)
 - github: https://github.com//dongb5/GAN-Timeline